
10-725: Convex Optimization Spring 2023

Lecture 4: January 26
Lecturer: Siva Balakrishnan

Today we’ll pick up our discussion of GD, and particularly consider GD in the smooth,
strongly convex case. We will then discuss the sub-gradient method, and its analysis. We’ll
then very briefly discuss lower bounds – this discussion will motivate accelarated first-order
methods which we will likely cover in the second part of the course, as well as projec-
tion/proximal methods which we cover next.

4.1 GD in the Smooth and Strongly Convex Case

Recall, that in our last lecture we studied GD for (nice) quadratics, and saw that it has
a very fast rate of convergence. This is more generally true of GD applied to β-smooth,
α-strongly convex functions. As before we will denote the condition number by,

κ =
β

α
.

Theorem 4.1 Let x∗ denote the minimizer of f , then after k iterations the GD iterate xk

satisfies,

‖xk − x∗‖22 ≤
(

1− 1

κ

)k
‖x0 − x∗‖22.

1. As a consequence of smoothness (and the fact that ∇f(x∗) = 0 we know that,

f(xk)− f(x∗) ≤ β

2
‖xk − x∗‖2 ≤ β

2

(
1− 1

κ

)2k

‖x0 − x∗‖22.

As with quadratics, to reach a point with f(xk)− f(x∗) ≤ ε, ignoring β, κ dependent
constants roughly log(1/ε) iterations suffice. This (linear) convergence is much faster
than GD under just smoothness and convexity (i.e. without strong convexity).

Proof: We’ll follow exactly the same proof as we had in the smooth case, except replacing
our application of convexity with one of strong-convexity. As before, we first observe that,

‖xt − x∗‖22 = ‖xt−1 − 1

β
∇f(xt−1)− x∗‖22

= ‖xt−1 − x∗‖22 −
2

β
∇f(xt−1)T (xt−1 − x∗) +

1

β2
‖∇f(xt−1)‖22.

4-1

4-2 Lecture 4: January 26

Exactly as in our proof without strong-convexity we note that by our descent lemma,

1

β2
‖∇f(xt−1)‖22 ≤

2

β
(f(xt−1)− f(xt)).

Now, by strong convexity we can do a bit better on the cross-term. We see that,

f(x∗) ≥ f(xt−1) +∇f(xt−1)T (x∗ − xt−1) +
α

2
‖x∗ − xt−1‖22,

re-arranging we obtain that,

− 2

β
∇f(xt−1)T (xt−1 − x∗) ≤ 2

β

[
f(x∗)− f(xt−1)− α

2
‖x∗ − xt−1‖22

]
.

Putting these pieces together, we see that,

‖xt − x∗‖22 ≤ ‖xt−1 − x∗‖22 +
2

β

[
f(x∗)− f(xt)− α

2
‖x∗ − xt−1‖22

]
≤
(

1− α

β

)
‖xt−1 − x∗‖22.

which directly implies our desired theorem.

One can slightly improve the above result (by being a bit more careful with the negative
term we dropped at the end), but it requires a bit of work and the improvement is not
substantial. You can see Bubeck’s book, particularly Lemma 3.11, if you want to see this
(slight) improvement worked out.

We have by now developed some understanding of GD, and how well it solves optimization
problems where the function is β-smooth over an unconstrained domain. Our next goal will
be to try to understand (unconstrained) optimization in the non-smooth setting, i.e. we’ll
no longer assume our function is differentiable and won’t be able to rely on gradients any
longer.

4.2 Subgradients

We’ve defined subgradients before. We’ll stick to a convex function f (although one can
define subgradients more generally). For any x ∈ dom(f) we’ll say gx ∈ ∂f(x) if for all
y ∈ dom(f),

f(y) ≥ f(x) + gTx (y − x).

1. For a convex f subgradients exist everywhere except in some pathological examples,
on the boundary of the domain of f .

Lecture 4: January 26 4-3

2. When unique the subgradient is equal to the gradient (and the function is differen-
tiable).

3. The collection of vectors gx which satisfy the above inequality form the subdifferential
∂f(x).

4.2.1 Examples

Here are a couple of useful examples:

1. We have discussed this example before: f(x) = |x|. Here if x 6= 0, then the function is
differentiable and gx = sign(x). At 0 it is not differentiable, but it is easy to check that
any g ∈ [−1, 1] satisfies the above inequality, so the subdifferential ∂f(0) = [−1, 1].

To denote this more conveniently, we can define the sign function:

sign(x) =


+1, x > 0

[−1,+1], x = 0

−1, x < 0.

Then we have that, ∂f(x) = sign(x).

2. A slight generalization of this is: f(x) = ‖x‖1 where x ∈ Rd. In this case, we just
obtain (applying the same logic as above, elementwise) that ∂f(x) = sign(x), where
now we apply the sign function elementwise.

3. A more interesting example is when we consider f(x) = ‖x‖2. When x 6= 0 we can find
the gradient directly and see that ∇f(x) = x/‖x‖2.
The function is not differentiable at x = 0, so we need to check which vectors g0 satisfy
the condition that,

‖y‖ ≥ gT0 y,

for every y ∈ Rd. As a consequence of the Cauchy-Schwarz inequality, any g0 with
‖g0‖2 ≤ 1 satisfies this condition, and therefore is in the subdifferential at 0.

4. An even more interesting example is to consider the function f(x) = IC(x) the indicator
function for a convex set. Now it turns out that for any x ∈ C,

∂f(x) = NC(x),

i.e. the subdifferential of the indicator function is the same as the normal cone.

4-4 Lecture 4: January 26

To see this, fix a point x ∈ C and observe that if gx ∈ ∂f(x) then we must have that,

f(y) ≥ f(x) + gTx (y − x) = gTx (y − x).

Now, there are two possibilities: if y /∈ C then the above condition is trivially satisfied
(since the LHS is ∞), so the only interesting possibility is when y ∈ C. The vector gx
must thus satisfy,

gTx (y − x) ≤ 0, for all y ∈ C,

which is the same as requiring that gx ∈ NC(x). Conversely, any vector in the normal
cone is a valid subgradient via similar reasoning.

4.2.2 Some basic subgradient calculus

In many ways subgradients behave just like gradients provided you interpret “set valued”
operations correctly. Here are a couple of facts (you will explore a couple more on your HW):

1. Scaling: ∂(af) = a× ∂f(x), when a > 0.

2. Sums: ∂(f1 + . . .+ fm) = ∂f1 + . . .+ ∂fm.

4.2.3 Using Subgradients to Derive Constrained, Non-Smooth Op-
timality Conditions

We have already seen one way to derive the optimality conditions for non-smooth constrained
optimization. Now we will see a different way, reducing it to an unconstrained problem where
we know the optimality conditions.

Observe that,

min
x∈C

f(x)

is equivalent to the unconstrained problem:

min
x∈Rd

f(x) + IC(x).

So x∗ is optimal for this program iff 0 ∈ ∂(f(x∗) + IC(x∗)), i.e. 0 ∈ ∂f(x∗) + ∂IC(x∗) =
∂f(x∗) +NC(x∗), which is exactly the condition we derived before.

Lecture 4: January 26 4-5

4.2.4 LASSO Optimality Conditions

Now, we’ll briefly look at the optimality conditions for the LASSO program, and try to
see another example where optimality conditions are a useful lens for understanding an
optimization problem.

The LASSO program is simply least squares with an `1 penalty, i.e. we solve:

x∗ = arg min
x∈Rd

1

2
‖b− Ax‖22 + λ‖x‖1.

Now, by our optimality conditions we know that any solution must have zero subgradient,
i.e. it must be the case that,

0 ∈ −AT (b− Ax∗) + λsign(x∗).

Coordinatewise this gives us the condition that,

ATj (b− Ax∗) ∈ λsign(x∗j).

One intuitive fact that one can glean from this is that at optimum if x∗j = 0 then we know
that, |ATj (b − Ax∗)| ≤ λ, i.e. roughly the 0s of the LASSO solution will correspond to
variables Aj which have a small correlation with the residuals (b−Ax∗). You can with a bit
more effort glean many other nice factoids about the LASSO solution from these conditions
– but unfortunately (unlike ridge, or ordinary least squares) one cannot solve them in closed
form to solve the LASSO.

If you take 36-709 with me then you’ll likely see a nice proof that the LASSO selects the
right variables (under some set of assumptions), and the starting point of that proof is just
the above optimality conditions.

4.2.5 Soft Thresholding

A closely related optimization problem to the LASSO, but one where we can in fact find the
optimal solution in closed form using the optimality conditions is the following program:

x∗ = arg min
x

1

2
‖y − x‖22 + λ‖x‖1.

Now, the optimality conditions tell us that x∗ is optimal iff

0 ∈ −(y − x∗) + λsign(x∗),

or equivalently,

(y − x∗) ∈ λsign(x∗).

4-6 Lecture 4: January 26

Lets define the soft-thresholding operation for a scalar yi, and λ > 0,

Sλ(yi) =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ

yi + λ if yi < −λ.

Now, if you stared at the above optimality conditions you would see that,

x∗ = Sλ(y),

where we apply soft-thresholding element-wise satisfies the optimality conditions (i.e. is an
optimal solution). It’s not difficult to convince yourself that since the objective is strictly
convex it is also the unique optimal solution.

This idea that we can efficiently, in closed-form, solve this simplified optimization problem
will be useful to us when we discuss proximal methods.

