
10-725: Convex Optimization Spring 2023

Lecture 3: January 24
Lecturer: Siva Balakrishnan

3.1 Gradient Descent

For the next couple of lectures we’ll focus on a basic unconstrained optimization problem:

min
x∈Rd

f(x).

For most of today we’ll also assume that f is differentiable everywhere. A classical method
to solve such optimization problems is gradient descent, i.e. we initialize at some guess x0

and execute iterations of the form,

xt+1 = xt − η∇f(xt),

for some choice of the step-size η > 0, and until we reach some stopping condition.

There are many ways to motivate this algorithm. One is to notice that if we were at a point
x and moved in a direction v with step-size η > 0

f(x+ ηv) ≥ f(x) + ηvT∇f(x).

So at the very least we’d like to ensure that the second term is negative, i.e. vT∇f(x) ≤ 0
(otherwise we’re moving to a strictly worse point). Such directions (which make a larger
than 90-degree angle with the gradient) are typically called descent directions (for f at x).
It should be clear that the negative gradient always gives us a descent direction (and in some
sense gives us one for which the term vT∇f(x) is most negative – amongst vectors v with a
given norm).

3.1.1 Gradient Descent as Minimizing the Local Linear Approxi-
mation

A more interesting way to motivate GD (which will also be subsequently useful to motivate
mirror descent, the proximal method and Newton’s method) is to consider minimizing a
linear approximation to our function (locally). A picture will be helpful.

With a picture in mind, we can view GD as solving the following local minimization problem:

xt+1 = arg min
y∈Rd

f(xt) +∇f(xt)T (y − xt) +
1

2η
‖y − xt‖22,

3-1

3-2 Lecture 3: January 24

where the second term behaves as a regularizer to ensure that (for small η) our update
remains close to our current iterate xt. This local optimization problem has a closed form
solution (take the derivative and set it to 0), and this precisely gives us our familiar GD
update:

xt+1 = xt − η∇f(xt).

3.2 Choosing the Step-Size

In practice, the most important choice to be made is that of the step-size. We’ll see various
theoretical rules/schedules that one might follow based on what we know about the objective
function. Here are some natural possibilities:

1. Fixed Step-Size: Here we simply select a fixed step-size η and run the algorithm
with that fixed step-size. An immediate problem that you will encounter (in practice)
even for very benign problems is that if you select the step-size too large then GD can
diverge, and if you select it too small it might take a very long time to converge.

You will find pictures of this in the BV textbook, but here is a typical analytical
example to keep in mind.

(a) Suppose we have f(x) = x2/2, initialize at x0 = 1 we take our step size to be 3
(too large). Then the iterates will be xt = −2, 4,−8, . . . (i.e. GD will diverge).

(b) For the same function, initialization, if we take our step size to be 0.00001 then
GD would take 105 steps to converge.

(c) On the other hand if we picked the “correct” step-size of 1, we would converge in
1 step.

In theory, we’d like to understand this issue better (i.e. what properties of a function
make certain step-sizes “too big”, “too small”, or “correct”). The correct step-size in
many cases may depend on properties of the function that we don’t know. In practice,
it will often be useful to have at our disposal a few different ways to tune the step-size
(and some understanding of how we might diagnose issues with the step-size choice).

2. Exact Line-Search: Once we’ve committed to a direction (in GD this is the direction
of the negative gradient), one might consider solving the following 1D optimization
problem to determine the best step-size:

ηt = arg min
η̃≥0

f(xt − η̃∇f(xt)).

It’s often computationally cumbersome to solve this optimization problem exactly, so
we resort to some approximation of this idea.

Lecture 3: January 24 3-3

3. Backtracking Line-Search: The idea of backtracking line-search very roughly, is
to try an aggressive (large) step-size, and reduce it by some factor if it’s too big.

Here is the algorithm: we pick two parameters α ∈ (0, 0.5) and β ∈ (0, 1). At iteration
t: initialize η = 1,

(a) If f(xt − η∇f(xt)) > f(xt) − αη‖∇f(xt)‖22, then reduce η := β × η and go back
to step (a).

(b) Otherwise, take a step, i.e. set xt+1 = xt − η∇f(xt).

Often in practice, taking α = 0.3 and β = 0.5 work reasonably well.

You will develop some better intuition when we study the main descent lemma for GD,
but roughly if your function is nice (the Hessian term in a Taylor series is ignorable),
you should expect to make about η‖∇f(xt)‖22 amount of progress in one step of GD if
η is small enough. The backtracking line search simply says if you’re making upto an
α factor of this amount of progress you should be content and take a step.

3.3 Two Canonical Examples

It is worth studying gradient descent in two simple analytical examples to understand the
type of behavior we might expect.

1. Suppose we are solving a least squares problem:

min
1

2
‖Ax− b‖22,

where S := ATA has finite condition number, i.e.

κ(S) =
λmax(S)

λmin(S)
<∞.

This is equivalent to saying our problem is both smooth and strongly convex (the most
favorable case for GD).

Here we know the solution in closed form:

x̂ = (ATA)−1AT b,

and in particular we can write x̂ as the (only) solution to the linear system (ATA)x̂ =
AT b. However, we might wish to avoid computing and inverting the covariance matrix,
and instead simply use GD on the least squares objective.

3-4 Lecture 3: January 24

Now, observe that the gradient of the objective, is ∇f(x) = −AT (b−Ax) so that, the
gradient descent iteration is simply,

xt+1 = xt + ηAT (b− Axt).

Re-arranging this and using the characterization of x̂ above we can see that,

xt+1 − x̂ =
[
I − η(ATA)

]
(xt − x̂).

We can unroll this to see that after k time steps xk satisfies,

xk − x̂ =
[
I − η(ATA)

]k
(xt − x̂),

as a direct consequence we see that,

‖xk − x̂‖2 ≤ ‖I − η(ATA)‖kop‖x0 − x̂‖2.

So if we can ensure that the operator norm term < 1 we will have rapid (geometric)
decay of the distance between our iterate and the optimal solution.

Let us denote ATA := S. Now, one can check the following fact: if we choose η =
2

λmax(S)+λmin(S)
(this is some ideal choice that we won’t have access to in practice, but will

help us in theory) then ‖I − η(ATA)‖op = (λmax(S)− λmin(S))/(λmax(S) + λmin(S)) =
(κ(S)− 1)/(κ(S) + 1) < 1 and we see that,

‖xk − x̂‖2 ≤
(
κ− 1

κ+ 1

)k
‖x0 − x̂‖2.

Some notes about this result:

(a) We might sometimes (often) care instead about the value of the objective function
at our iterates i.e. we would like to upper bound f(xk)−f(x̂). For nice quadratics
its easy to obtain a bound on this error from a bound on ‖xk− x̂‖2. Some algebra
will show that,

f(xk)− f(x̂) =
(xk − x̂)TATA(xk − x̂)

2

≤ λmax(S)

2
‖xk − x̂‖22

≤ λmax(S)

2

(
κ− 1

κ+ 1

)2k

‖x0 − x̂‖22.

(b) This type of convergence is often called linear convergence in optimization (and
sometimes called geometric convergence). A consequence of the above statement
is that if I want my error to be ≤ ε then it suffices to take k ∼ log(1/ε) steps
(ignoring constants which depend on how far you initialize, and the condition
number of S).

Lecture 3: January 24 3-5

2. Another prototypical example is applying (sub)GD to the (univariate) function f(x) =
|x|. Suppose that we initialize at some point x0, and use some constant step-size η
(ignoring for now the non-differentiability at 0). We can see that in general the GD
iterates will bounce around the optimum, and will not converge. A picture is easier to
follow.

In this case, the only way to “force” GD to converge will be to use a decaying step-size
(or if we want to get to within ε of the optimum we should use a step-size that is
smaller than that), and this will result in much slower convergence.

This is one of the main problems of trying to optimize functions which are not smooth.

3.4 GD on Smooth Functions

For the rest of this lecture, we’ll assume that our objective function f is twice-differentiable
and β-smooth. Our goal will be to try to understand the behaviour of GD in three settings
which are increasingly “nicer”:

1. Arbitrary (possibly non-convex) function f which is twice-differentiable and β-smooth.

2. Convex function f which is twice-differentiable and β-smooth.

3. Convex function f which is twice-differentiable and β-smooth, and is additionally α-
strongly convex.

Most of these results don’t require twice-differentiability but the proofs are sometimes a bit
more transparent when you do have twice-differentiability.

3.4.1 Smooth Possibly Non-Convex Functions

For a not necessarily convex problem, we should not expect to be able to find a point which
is a global optimum. Instead we’ll settle for finding a point with small gradient norm, i.e.
a point x for which ‖∇f(x)‖2 ≤ ε (say). These points are called approximate saddle points
(points where the gradient is 0 are called saddle points).

Here is a simple fact (it’s just the multivariate analogue of Taylor’s theorem) that holds for
functions which are twice differentiable:

Lemma 3.1 For any x, y ∈ Rd, there is a z on the line joining x to y such that,

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x).

3-6 Lecture 3: January 24

Proof: Try to apply the usual (univariate) Taylor theorem to the function g(t) = f((1 −
t)x+ ty). You can for instance use this lemma to see why the second-order characterization
of convexity implies the first-order characterization.

As a side note, you can just stare at the above expression and try to convince yourselves that
(for twice differentiable functions) the second-order characterization of convexity implies the
first-order one.

The main “descent” lemma:

Lemma 3.2 For any step-size η ≤ 2/β, the GD algorithm is a descent algorithm. For any
η ≤ 1/β it further satisfies,

f(xt+1) ≤ f(xt)− η

2
‖∇f(xt)‖22.

Worth noting that some (pretty miraculous) facts are true:

1. If ‖∇f(xt)‖2 > 0 then we have strict descent, i.e. f(xt+1) < f(xt).

2. Furthermore, if the gradient is large (in norm) then an iteration of GD decreases the
function by a large amount.

3. Just by smoothness (no convexity), we already see that GD doesn’t suffer from the
“bouncing around” problem it encounters when applied to the (non-smooth) function
|x|, even with a fixed step-size.

Proof: Our β-smoothness condition implies that,

1

2
(y − x)T∇2f(z)(y − x) ≤ β

2
‖y − x‖22.

Applying the above Lemma we now see that,

f(xt+1) ≤ f(xt)− η‖∇f(xt)‖22 +
η2β

2
‖∇f(xt)‖22

≤ f(xt)−
(
η − η2β

2

)
‖∇f(xt)‖22.

From this we directly obtain our two conclusions.

3.4.1.1 Descent Lemma Without Twice Differentiability

The descent lemma follows from smoothness directly. Here is an alternate proof. By smooth-
ness,

f(xt+1) ≤ f(xt) +∇f(xt)T (xt+1 − xt) +
β

2
‖xt+1 − xt‖22,

Lecture 3: January 24 3-7

so using the fact that, xt+1 = xt − η∇f(xt), we see that,

f(xt+1) ≤ f(xt)− η‖∇f(xt)‖22 +
η2β

2
‖∇f(xt)‖22,

which is exactly the claim we had above.

3.4.1.2 The main theorem

Theorem 3.3 Let x∗ be any minimizer of f , then GD with step-size 1
β

has the property that
within k iterations it will reach a point x such that

‖∇f(x)‖2 ≤
√

2β

k
(f(x0)− f(x∗)).

1. Dimension-free: It is worth noticing an amazing fact about the above result, and
more generally about many of the results about optimization algorithms you will see in
this course. The result is completely dimension-free, i.e. the error goes doesn’t depend
at all on the ambient dimension d.

Proof: For contradiction, assume that in all iterations from t ∈ {0, 1, . . . , k} we have that,

‖∇f(xt)‖2 ≥
√

2β
k

(f(x0)− f(x∗)). Then on each iteration t ∈ {0, . . . , k − 1} we conclude

that we must have,

f(xt+1) ≤ f(xt)− f(x0)− f(x∗)

k
,

and re-arranging we see that,

f(xt+1)− f(xt) ≤ −f(x0)− f(x∗)

k
.

Summing (telescoping) from t = 0 through k − 1, we have,

f(xk)− f(x0) ≤ f(x∗)− f(x0),

which means that xk must either be a global minimizer of the function (in which case the
Theorem is certainly true) or it cannot be the case that the gradient was large on each
iteration.

3-8 Lecture 3: January 24

3.4.2 Gradient Descent on Smooth Convex Functions

Before we prove a result it’s worth understanding how convexity might help us. In the
previous section, we already showed GD will find a point with small gradient norm. We
know that for convex functions we have the upper bound:

f(x)− f(x∗) ≤ ∇f(x)T (x− x∗) ≤ ‖∇f(x)‖‖x− x∗‖,

by Cauchy-Schwarz. Suppose that we initialize in some finite neighborhood of x∗, i.e. that
‖x − x∗‖ ≤ R. Intuitively, just by convexity we already know that if the gradient is small
we must be close to the optimum (in function value) – this is one of the key properties of
convex functions. Our subsequent proof will be a refinement of this basic intuition.

Theorem 3.4 Let x∗ be any minimizer of f , then GD with step-size 1
β

has the property that

after k iterations it will reach a point xk such that

f(xk)− f(x∗) ≤ β‖x0 − x∗‖2

2k
.

1. It is worth noting that now we obtain a global guarantee (i.e. GD will find a point as
good as the best point x∗). However, the guarantee is still much slower than the one
we derived earlier for quadratics. To obtain ε-error we need to take roughly 1/ε steps.

2. This proof – and many proofs in convex optimization will follow a few elementary
steps. It might be a bit mysterious at first, but you’ll get the hang of it. Usually, the
steps are playing with quadratics (i.e. some form of the Pythagorean theorem) and
then using the conditions (convexity, smoothness, strong convexity) in a clever way.

Proof: Notice that, for any t ∈ {1, . . . , k}

‖xt − x∗‖22 = ‖xt−1 − η∇f(xt−1)− x∗‖22 (3.1)

= ‖xt−1 − x∗‖22 − 2η∇f(xt−1)T (xt−1 − x∗) + η2‖∇f(xt−1)‖22. (3.2)

By our main descent lemma (which holds even without convexity) we know that for our
choice of step-size,

‖∇f(xt−1)‖22 ≤
2

η
(f(xt−1)− f(xt)).

By convexity, we know that,

f(xt−1)− f(x∗) ≤ ∇f(xt−1)T (xt−1 − x∗).

Lecture 3: January 24 3-9

So we obtain from (3.1),

f(xt−1)− f(x∗) ≤ ∇f(xt−1)T (xt−1 − x∗) ≤ 1

2η

(
‖xt−1 − x∗‖22 − ‖xt − x∗‖22

)
+ f(xt−1)− f(xt).

This gives us the fact that,

f(xt)− f(x∗) ≤ β

2

(
‖xt−1 − x∗‖22 − ‖xt − x∗‖22

)
.

Summing from t = 1, . . . , k (and dividing by k), and dropping the remaining negative term
we obtain that,

1

k

k∑
t=1

f(xt)− f(x∗) ≤ β

2k
‖x0 − x∗‖22.

Now, we can conclude the proof by noticing that for our choice of step-size, f(xk) ≤ f(xt)
for t = {1, . . . , k} (i.e. GD is a descent algorithm).

In the next lecture, we’ll continue our discussion of gradient descent with an eye toward
trying to bridge the gap between the result we obtained above and the result we began this
lecture with for quadratics.

