10-725: Convex Optimization Spring 2023

Lecture 1: January 17

Lecturer: Siva Balakrishnan

1.1 Administrative Highlights

Most information can be found on the Syllabus, including information about grading, HWs,
quizzes and tests.

The first half of the course (until Spring break) will be taught in person, and the second
half will be taught via Zoom. We will be using some combination of Piazza, Canvas and
Gradescope.

For almost all questions your first point of contact should be the Education Associate: Daniel
Bird (dpbird@andrew.cmu.edu).

HW 1 will be released in one week and will be due two weeks after release.

The course will be fairly fast paced — we will assume some familiarity with real analysis,
calculus and linear algebra. If you fall short on any of these things, it?s certainly possible to
catch up; but don’t hesitate to talk to us.

1.2 What the course is about

The course is broadly about optimization. Despite the fact that it’s a course in the ML
department — this is not solely a course about optimization for deep learning. At least the
first half of the course will primarily focus on convezr optimization. These ideas are extremely
broadly useful.

There are lots of different motivations for the topics we will learn about in this course.
Optimization problems are everywhere in ML, Statistics, and tons of other disciplines.

1. A deep understanding of optimization will aid in designing algorithms to solve different
types of optimization problems, and in understanding their relative merits. This will
be our primary focus in this course.

2. Just formulating an optimization problem often gives a much deeper understanding of
the problem at hand — for instance, the statistical analysis of most estimators crucially
builds on insights (and characterizations) obtained by formulating the estimator as a
solution to an optimization problem.
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3. Finally, knowing the tricks of the optimization trade often aids in creating new opti-
mization problems (ones with better algorithmic properties — i.e. are easier to solve,
or better statistical properties).

Todays lecture will focus on introducing optimization problems, and convex optimization
problems (which will be the focus of the first half of the course). Then we’ll turn our
attention to defining and understanding convex sets. This is all from Chapters 1 and 2 of
the Boyd-Vandenberghe (henceforth BV) book.

1.3 (Mathematical) optimization problems

An optimization problem of the form,

min fo(z)
subject to fi(x) <b;, i€ {l,...,m}.

Just some terminology:

1. Optimization variables: z € RY.

2. Objective function: f;: R?+— R.

3. Constraint functions: f;:R?— R.

4. Feasible solution: =z satisfies all the constraints.

5. Optimal solution: z*, has smallest value of f; amongst all vectors which satisfy
constraints.
6. Optimal value: p* =inf{fo(z): fi(z) <0,i € {1,...,m}}.

e p* may not be attained, i.e. there may not be an x* for which fy(z*) = p*.

e p* = oo if problem is infeasible.

e p* = —oo if problem is unbounded from below.

1.3.1 Examples

It is worth keeping in mind some examples of optimization problems, just so we have some
concrete places to map the terminology we will learn. Here are some of my favorite opti-
mization problems:
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1. Maximum likelihood
2. Least squares
3. Empirical risk minimization

4. Optimal Transport

1.3.2 Standard form

It is not significantly different, but some authors (particularly BV), refer to programs in
standard form as also additionally allowing equality constraints, i.e.

min fo(z)
subject to fi(x) <b;, i€ {l,...,m}
hl<l’) 207 ZG{l,,p}

1.3.3 Implicit versus explicit constraints

The above optimization problems have some explicit (inequality and equality) constraints.
It is worth noting that in general they also have implicit constraints, i.e. that,

z € D = dom(fy) N ﬁ dom(f;) N (") dom(h,).
=1 =1

That is to say, these functions may not be defined everywhere, in which case our optimization
problem is implicitly only over vectors where all the criterion and constraint functions are
defined.

If we wanted to be more explicit we might write the standard form optimization problem as:
min fo(z)
subject to fi(x) <b;, i€ {l,...,m}
hl<l’) = 07 1€ {1, ce ,p}

1.3.4 Convex Optimization Problems — Standard Form

A problem of the form,

min folx)

subject to fi(x) <b;, i€ {l,...,m}
hi(x) =0, i€ {l,...,p},
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where

1. D is a convex set.
2. fo, f1,..., fm are convex functions.

3. hi(x) = al'z + b;, are affine functions.

To make sense of this definition we’ll need to understand what convex sets are, and what
convex functions are. This will be what we will spend most of this and the next lecture on.

For now it is worth noting (and re-visiting once the definitions are in place), that the explicit
constraints define a convex set, and their intersection with the domain D is also a convex set.
If we denote this convex set C then our convex optimization problem can be equivalently,
succinctly described as:

wip fol@),

i.e. a conver optimization problem is simply the problem of minimizing a convexr function
over a conver Set.

1.3.5 The Key Feature of Convex Optimization Problems

The most important structural feature of convex optimization problems is that every local
minima s a global minima. This in turn makes local search algorithms effective for convex
optimization.

We’ll need to define some things in order to make sense of this claim. First, lets briefly define
convex sets and functions:

Definition 1.1 (Convex Set) A set C is conver, if for every xy,22 € C and 0 < 0 < 1 we
have that, Oz, + (1 — 0)x, € C.

Definition 1.2 (Convex Function) A function f: R?— R is a convex function if,

1. dom(f) is a conver set,
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2. for every x,y € dom(f), and 0 < 0 <1 we have that,

fO0x+ (1 —0)y) <0f(x) +(1—0)f(y)

(v, f(y))
(z, f(z))

Next, we’ll need to understand what local optima are:

Definition 1.3 (Local & Global Optima) A point x is a local optima, if x is feasible,
and minimizes fo in a local neighborhood, i.e. for some p > 0,

fo(z) < fo(y),

for all y which are feasible, and ||x —y|l2 < p. A point x* is a global optima, if z* is feasible
and

fo(x) < foly),

for all y which are feasible.
Theorem 1.4 For a convex optimization problem any local optima is a global optima.

Proof: Let x be a local optima. Suppose for contradiction of global optimality, that there
is some x* which is feasible, and has the property that,

fo(z") < fo(z).

Now, lets examine a new point,
To = (1—%)x+%x*.
|z — 2*[|2 |z — 2*||2
Notice that,

1. xg is feasible, since it is a convex combination of two feasible points x and z*, and the
set of feasible points is a convex set.
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2. It is within a p-neighborhood of the local optima z, i.e.
S
[ |P

|z — o]z = |z — 2% = p.

3. Finally, observe that the objective value at xy by using the convexity of f, can be
upper bounded as,

P P *
fo(zo) < <1 - M) folz) + mfo(f )

= fole) + o le®) = fola) < fo(o)

since fo(z*) < fo(x). However, since x is in the p-neighborhood of x, this final claim
contradicts the local optimality of x.

As a consequence we see that there cannot be any feasible z* which satisfies fy(2*) < fo(x).

1.4 Convex Sets

We have already defined convex sets so let us briefly reflect on why they are so important
in optimization. Here is picture you should have in your head, suppose we are optimizing
some function over a set C' and the function is simple (linear) and takes smaller values in
the direction of the arrow. In case the domain is convex, we can follow the “good direction”
and when we hit a “wall” declare that we’re done. If it’s not convex, we have a problem —
there could be some “juicy” points (with much better objective value) somewhere “across
the wall”, and there is no easy way to optimize.

Our next goal will be to describe some examples.
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Convex Hull: For a given collection of points z1,...,z; € R¥, a convex combination of
the points is a linear combination,

911’1 + ...+ Hk:ck,

with 6; > 0, and Y.F | 6; = 1. For a set C, the convex hull conv(C) is the set of all convex
combinations of elements of C. This is always a convex set (and is the smallest convex set
that contains C).

Many more examples (in each case, would be a good exercise to figure out how you would
verify convexity):

1. Trivial ones: empty set, point, line

2. Norm ball: {z: ||z| <r}, for any given norm || - || and radius » > 0.
3. Hyperplane: {x:a’x = b} for a given a,b.
4

. Halfspace: {z : a’z < b} for a given a,b. Note that halfspaces are fundamental
convex sets. We will think about them in more detail when discussing the separating
and supporting hyperplane theorems. They are also at the heart of convex duality.

5. Affine space: {z: Az = b}, for given A,b.
Here is a slightly more interesting example.

Theorem 1.5 The set of optimal solutions X,y to a convex optimization problem is a convex
set.

Proof: Suppose we consider, 1,22 € Xop. Since they are both optimal we must have that
fo(z1) = fo(z2). Now, consider g = 0x1 + (1 — )y, where 0 < 0 < 1. 1z is feasible, since
the set of feasible solutions is convex. Further, by convexity of the objective we see that,

fo(wo) < Ofo(x1) + (1 —0) fo(x2) < folz1),

and so zg € Xope also. ]

Some more examples (again, useful to make sure you know how to verify the convexity of
these sets):

1. Polyhedra: The set {z : Az < b} for given A,b (or equivalently, sets of the form
{z: Az < b,Cz = d}).

2. Simplices:  {zy,...,x;} are affinely independent if there is no Aq,...,\;, with
Zle A; = 0 such that Zle Aix; = 0 except all zeros. For a collection of affinely
independent points xy,...,xx, the corresponding simplex is simply the convex hull
conv{xy,...,Tx}

A prominent example is the probability simplex, which is the convex hull of the d basis
vectors eq, ..., eq.
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1.4.1 Convex Cones

A set C'is a cone if for every z € C, fx € C for any 6§ > 0, i.e. for any point in C' the ray
joining that point to the origin must also be in C.

T1

T2

Cones are not convex in general, so we will refer to conver cones as cones which are addi-
tionally convex. It is easy to see that convex cones additionally satisfy the property that if
x1,r9 € C then for any 61,05 > 0, 6121 + 025 € C. These are called conic combinations,
i.e. for x1,...,x, a conic combination is any point of the form 6,z + ...+ 6,z with 6, > 0
is called a conic combination. The conic hull of a set C' collects all conic combinations of
points in C'; and is the smallest convex cone containing C'.

There are several important cones:

1. Norm Cone: {(z,t): ||z| <t}. For the ¢35 norm this cone is called the second-order
cone (sometimes called the ice-cream cone).

2. PSD Cone: Denoted S¢ = {X € §?: X = 0}, i.e. X is a symmetric matrix, with
all positive eigenvalues.

For any cone C', the polar cone C° is defined as the collection of vectors which make an
atleast 90-degree angle with all vectors in C| i.e.

C°={r:2"7y <0,forall y € C}.

1.4.1.1 The Tangent Cone and Normal Cone

There is a fundamental reason why cones will be important to us. We will use them to
characterize optimality. Two cones are important in this context: the normal cone and its
polar cone (which has its own name, the tangent cone).
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1. Normal Cone: Given a set (', and a point x € C' the normal cone of C' at x is
defined as:

Ne(z) ={g9:¢"(y —x) <0,for all y € C}.

It is important to make sense of the following figure (for clarity in the figure, the normal
cone N¢(z) has been translated to z).

There are three different types of points for which we should understand what the
normal cone looks like: (1) Interior points (the normal cone is empty), (2) Boundary
points where the boundary is smooth (the normal cone is a single ray) (3) Boundary
points where the boundary is not smooth (the normal cone is “fat”).

Even if C' is not convex this cone is a convex cone (think about how you might show
this).

2. Tangent Cone: For convex sets the polar of the normal cone is the tangent cone,
i.e. Te(x) = Ne(x)°. In this case, the tangent cone is a convex cone.

More generally (i.e. for non-convex sets) the tangent cone is defined to be the set of
feasible (limiting) directions, i.e. roughly directions along which you can move and stay
in the set C'. This is possibly the more intuitive way of thinking about the tangent
cone at a point (it is simply the set of feasible directions we can move and stay in the
set). For general sets C', the tangent cone need not be convex.
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We will re-visit optimality conditions at some point, but for now we’ll just summarize the
punchline: in a convex optimization problem, a point x will be optimal if the negative
gradient belongs to Ng(x), i.e. roughly if the direction we’d like to move makes atleast a
90-degree angle with every direction that we can move in.

1.5 The Separating and Supporting Hyperplane The-
orems

Theorem 1.6 (Separating Hyperplane) If C' and D are non-empty convex sets which
are disjoint, i.e. C N D = (), then there exists a separating hyperplane, i.e. a,b such that,

atz <b, foralz e C,
a’x>b, for allz € D.

Theorem 1.7 (Supporting Hyperplane) IfC is a non-empty convex set, and xo € boundary(C'),
then there is a vector a such that,

a’ (v —x0) <0, for all v € C.

The latter has an interesting converse, if the set C' is closed (check what this means if you're
not familiar with it), and has a non-empty interior, and has a supporting hyperplane at
every point then C must be convex.
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The proofs of these theorems (at least in the case where the sets are closed and bounded) is
straightforward (and explicit) — see BV, Section 2.5 if you are curious.

1.6 Operations which Preserve Convexity
There are some important operations which preserve convexity of sets:

1. Intersection: The intersections of convex sets is a convex set.
2. Scaling and Translation: If C' is convex, then
aC +b:={ax+b: 2 € C},
is convex for any a, b.

3. Affine Images and Pre-Images: Let us define f(z) = Az + b to be an affine
function. If C' is a convex set, then,

(€)= {f(x) zeC}

is also a convex set. Also,

fHC) ={z: fx) € O},

1s a convex set.

There are a couple more that are more involved but useful to know (we may not have time
to cover this in lecture, in which case we will re-visit it when we need it).
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1. Perspective: The perspective function P : R¢x R, , — R (where R, , is the strictly
positive reals), is defined as:

P(x,t) = x/t.

If C C dom(P) is a convex set, then its image P(C') is a convex set, and similarly if D
is convex then P~!(D) is convex.

2. Linear-Fractional: The linear fractional function for a given A, b, ¢, d is given by:

Az +0b
f(x)_CTl’—f—d

If C' C dom(f) is a convex set, then its image f(C') is a convex set, and similarly if D
is convex then f~!(D) is convex.

Conditional Probability Set: This is an example of using the linear-fractional image to
characterize convexity. Let U,V be random variables over {1,...,n} and {1,...,m}. Let
C C R™ be a set of joint distributions for U,V , i.e., each p € C' defines joint probabilities

pij =P(U =1,V =)

Let D C R™ contain corresponding conditional distributions, i.e., each ¢ € D defines
gij = P(U =iV = j)

Assume (' is convex. Let’s prove that D is convex. Write

D = {qER”m:qu: L, for some pEC} = f(C)

j
ZL Dkj

where f is a linear-fractional function, hence D is convex.



