
10-725: Convex Optimization Spring 2023

Lecture 1: January 17
Lecturer: Siva Balakrishnan

1.1 Administrative Highlights

Most information can be found on the Syllabus, including information about grading, HWs,
quizzes and tests.

The first half of the course (until Spring break) will be taught in person, and the second
half will be taught via Zoom. We will be using some combination of Piazza, Canvas and
Gradescope.

For almost all questions your first point of contact should be the Education Associate: Daniel
Bird (dpbird@andrew.cmu.edu).

HW 1 will be released in one week and will be due two weeks after release.

The course will be fairly fast paced – we will assume some familiarity with real analysis,
calculus and linear algebra. If you fall short on any of these things, it?s certainly possible to
catch up; but don’t hesitate to talk to us.

1.2 What the course is about

The course is broadly about optimization. Despite the fact that it’s a course in the ML
department – this is not solely a course about optimization for deep learning. At least the
first half of the course will primarily focus on convex optimization. These ideas are extremely
broadly useful.

There are lots of different motivations for the topics we will learn about in this course.
Optimization problems are everywhere in ML, Statistics, and tons of other disciplines.

1. A deep understanding of optimization will aid in designing algorithms to solve different
types of optimization problems, and in understanding their relative merits. This will
be our primary focus in this course.

2. Just formulating an optimization problem often gives a much deeper understanding of
the problem at hand – for instance, the statistical analysis of most estimators crucially
builds on insights (and characterizations) obtained by formulating the estimator as a
solution to an optimization problem.
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3. Finally, knowing the tricks of the optimization trade often aids in creating new opti-
mization problems (ones with better algorithmic properties – i.e. are easier to solve,
or better statistical properties).

Todays lecture will focus on introducing optimization problems, and convex optimization
problems (which will be the focus of the first half of the course). Then we’ll turn our
attention to defining and understanding convex sets. This is all from Chapters 1 and 2 of
the Boyd-Vandenberghe (henceforth BV) book.

1.3 (Mathematical) optimization problems

An optimization problem of the form,

min f0(x)

subject to fi(x) ≤ bi, i ∈ {1, . . . ,m}.

Just some terminology:

1. Optimization variables: x ∈ Rd.

2. Objective function: f0 : Rd 7→ R.

3. Constraint functions: fi : Rd 7→ R.

4. Feasible solution: x satisfies all the constraints.

5. Optimal solution: x∗, has smallest value of f0 amongst all vectors which satisfy
constraints.

6. Optimal value: p∗ = inf{f0(x) : fi(x) ≤ 0, i ∈ {1, . . . ,m}}.

• p∗ may not be attained, i.e. there may not be an x∗ for which f0(x
∗) = p∗.

• p∗ =∞ if problem is infeasible.

• p∗ = −∞ if problem is unbounded from below.

1.3.1 Examples

It is worth keeping in mind some examples of optimization problems, just so we have some
concrete places to map the terminology we will learn. Here are some of my favorite opti-
mization problems:
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1. Maximum likelihood

2. Least squares

3. Empirical risk minimization

4. Optimal Transport

1.3.2 Standard form

It is not significantly different, but some authors (particularly BV), refer to programs in
standard form as also additionally allowing equality constraints, i.e.

min f0(x)

subject to fi(x) ≤ bi, i ∈ {1, . . . ,m}
hi(x) = 0, i ∈ {1, . . . , p}.

1.3.3 Implicit versus explicit constraints

The above optimization problems have some explicit (inequality and equality) constraints.
It is worth noting that in general they also have implicit constraints, i.e. that,

x ∈ D = dom(f0) ∩
m⋂
i=1

dom(fi) ∩
p⋂

i=1

dom(hi).

That is to say, these functions may not be defined everywhere, in which case our optimization
problem is implicitly only over vectors where all the criterion and constraint functions are
defined.

If we wanted to be more explicit we might write the standard form optimization problem as:

min
x∈D

f0(x)

subject to fi(x) ≤ bi, i ∈ {1, . . . ,m}
hi(x) = 0, i ∈ {1, . . . , p}.

1.3.4 Convex Optimization Problems – Standard Form

A problem of the form,

min
x∈D

f0(x)

subject to fi(x) ≤ bi, i ∈ {1, . . . ,m}
hi(x) = 0, i ∈ {1, . . . , p},
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where

1. D is a convex set.

2. f0, f1, . . . , fm are convex functions.

3. hi(x) = aTi x+ bi, are affine functions.

To make sense of this definition we’ll need to understand what convex sets are, and what
convex functions are. This will be what we will spend most of this and the next lecture on.

For now it is worth noting (and re-visiting once the definitions are in place), that the explicit
constraints define a convex set, and their intersection with the domain D is also a convex set.
If we denote this convex set C then our convex optimization problem can be equivalently,
succinctly described as:

min
x∈C

f0(x),

i.e. a convex optimization problem is simply the problem of minimizing a convex function
over a convex set.

1.3.5 The Key Feature of Convex Optimization Problems

The most important structural feature of convex optimization problems is that every local
minima is a global minima. This in turn makes local search algorithms effective for convex
optimization.

We’ll need to define some things in order to make sense of this claim. First, lets briefly define
convex sets and functions:

Definition 1.1 (Convex Set) A set C is convex, if for every x1, x2 ∈ C and 0 ≤ θ ≤ 1 we
have that, θx1 + (1− θ)x2 ∈ C.

24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Definition 1.2 (Convex Function) A function f : Rd 7→ R is a convex function if,

1. dom(f) is a convex set,
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2. for every x, y ∈ dom(f), and 0 ≤ θ ≤ 1 we have that,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

Next, we’ll need to understand what local optima are:

Definition 1.3 (Local & Global Optima) A point x is a local optima, if x is feasible,
and minimizes f0 in a local neighborhood, i.e. for some ρ > 0,

f0(x) ≤ f0(y),

for all y which are feasible, and ‖x− y‖2 ≤ ρ. A point x∗ is a global optima, if x∗ is feasible
and

f0(x) ≤ f0(y),

for all y which are feasible.

Theorem 1.4 For a convex optimization problem any local optima is a global optima.

Proof: Let x be a local optima. Suppose for contradiction of global optimality, that there
is some x∗ which is feasible, and has the property that,

f0(x
∗) < f0(x).

Now, lets examine a new point,

x0 =

(
1− ρ

‖x− x∗‖2

)
x+

ρ

‖x− x∗‖2
x∗.

Notice that,

1. x0 is feasible, since it is a convex combination of two feasible points x and x∗, and the
set of feasible points is a convex set.
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2. It is within a ρ-neighborhood of the local optima x, i.e.

‖x− x0‖2 =
ρ

‖x− x∗‖2
‖x− x∗‖2 = ρ.

3. Finally, observe that the objective value at x0 by using the convexity of f0 can be
upper bounded as,

f0(x0) ≤
(

1− ρ

‖x− x∗‖2

)
f0(x) +

ρ

‖x− x∗‖2
f0(x

∗)

= f0(x) +
ρ

‖x− x∗‖2
(f0(x

∗)− f0(x)) < f0(x),

since f0(x
∗) < f0(x). However, since x0 is in the ρ-neighborhood of x, this final claim

contradicts the local optimality of x.

As a consequence we see that there cannot be any feasible x∗ which satisfies f0(x
∗) < f0(x).

1.4 Convex Sets

We have already defined convex sets so let us briefly reflect on why they are so important
in optimization. Here is picture you should have in your head, suppose we are optimizing
some function over a set C and the function is simple (linear) and takes smaller values in
the direction of the arrow. In case the domain is convex, we can follow the “good direction”
and when we hit a “wall” declare that we’re done. If it’s not convex, we have a problem –
there could be some “juicy” points (with much better objective value) somewhere “across
the wall”, and there is no easy way to optimize.

Our next goal will be to describe some examples.
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Convex Hull: For a given collection of points x1, . . . , xk ∈ Rk, a convex combination of
the points is a linear combination,

θ1x1 + . . .+ θkxk,

with θi ≥ 0, and
∑k

i=1 θi = 1. For a set C, the convex hull conv(C) is the set of all convex
combinations of elements of C. This is always a convex set (and is the smallest convex set
that contains C).

Many more examples (in each case, would be a good exercise to figure out how you would
verify convexity):

1. Trivial ones: empty set, point, line

2. Norm ball: {x : ‖x‖ ≤ r}, for any given norm ‖ · ‖ and radius r ≥ 0.

3. Hyperplane: {x : aTx = b} for a given a, b.

4. Halfspace: {x : aTx ≤ b} for a given a, b. Note that halfspaces are fundamental
convex sets. We will think about them in more detail when discussing the separating
and supporting hyperplane theorems. They are also at the heart of convex duality.

5. Affine space: {x : Ax = b}, for given A, b.

Here is a slightly more interesting example.

Theorem 1.5 The set of optimal solutions Xopt to a convex optimization problem is a convex
set.

Proof: Suppose we consider, x1, x2 ∈ Xopt. Since they are both optimal we must have that
f0(x1) = f0(x2). Now, consider x0 = θx1 + (1− θ)x2, where 0 ≤ θ ≤ 1. x0 is feasible, since
the set of feasible solutions is convex. Further, by convexity of the objective we see that,

f0(x0) ≤ θf0(x1) + (1− θ)f0(x2) ≤ f0(x1),

and so x0 ∈ Xopt also.

Some more examples (again, useful to make sure you know how to verify the convexity of
these sets):

1. Polyhedra: The set {x : Ax ≤ b} for given A, b (or equivalently, sets of the form
{x : Ax ≤ b, Cx = d}).

2. Simplices: {x1, . . . , xk} are affinely independent if there is no λ1, . . . , λk, with∑k
i=1 λi = 0 such that

∑k
i=1 λixi = 0 except all zeros. For a collection of affinely

independent points x1, . . . , xk, the corresponding simplex is simply the convex hull
conv{x1, . . . , xk}.
A prominent example is the probability simplex, which is the convex hull of the d basis
vectors e1, . . . , ed.
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1.4.1 Convex Cones

A set C is a cone if for every x ∈ C, θx ∈ C for any θ ≥ 0, i.e. for any point in C the ray
joining that point to the origin must also be in C.

26 2 Convex sets

0

x1

x2

Figure 2.4 The pie slice shows all points of the form θ1x1 + θ2x2, where
θ1, θ2 ≥ 0. The apex of the slice (which corresponds to θ1 = θ2 = 0) is at
0; its edges (which correspond to θ1 = 0 or θ2 = 0) pass through the points
x1 and x2.

00

Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.

Cones are not convex in general, so we will refer to convex cones as cones which are addi-
tionally convex. It is easy to see that convex cones additionally satisfy the property that if
x1, x2 ∈ C then for any θ1, θ2 ≥ 0, θ1x1 + θ2x2 ∈ C. These are called conic combinations,
i.e. for x1, . . . , xk, a conic combination is any point of the form θ1x1 + . . .+ θkxk with θi ≥ 0
is called a conic combination. The conic hull of a set C collects all conic combinations of
points in C, and is the smallest convex cone containing C.

There are several important cones:

1. Norm Cone: {(x, t) : ‖x‖ ≤ t}. For the `2 norm this cone is called the second-order
cone (sometimes called the ice-cream cone).

2. PSD Cone: Denoted Sd
+ = {X ∈ Sd : X � 0}, i.e. X is a symmetric matrix, with

all positive eigenvalues.

For any cone C, the polar cone C◦ is defined as the collection of vectors which make an
atleast 90-degree angle with all vectors in C, i.e.

C◦ = {x : xTy ≤ 0, for all y ∈ C}.

1.4.1.1 The Tangent Cone and Normal Cone

There is a fundamental reason why cones will be important to us. We will use them to
characterize optimality. Two cones are important in this context: the normal cone and its
polar cone (which has its own name, the tangent cone).
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1. Normal Cone: Given a set C, and a point x ∈ C the normal cone of C at x is
defined as:

NC(x) = {g : gT (y − x) ≤ 0, for all y ∈ C}.

It is important to make sense of the following figure (for clarity in the figure, the normal
cone NC(x) has been translated to x).

●

●

●

●

There are three different types of points for which we should understand what the
normal cone looks like: (1) Interior points (the normal cone is empty), (2) Boundary
points where the boundary is smooth (the normal cone is a single ray) (3) Boundary
points where the boundary is not smooth (the normal cone is “fat”).

Even if C is not convex this cone is a convex cone (think about how you might show
this).

2. Tangent Cone: For convex sets the polar of the normal cone is the tangent cone,
i.e. TC(x) = NC(x)◦. In this case, the tangent cone is a convex cone.

More generally (i.e. for non-convex sets) the tangent cone is defined to be the set of
feasible (limiting) directions, i.e. roughly directions along which you can move and stay
in the set C. This is possibly the more intuitive way of thinking about the tangent
cone at a point (it is simply the set of feasible directions we can move and stay in the
set). For general sets C, the tangent cone need not be convex.
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We will re-visit optimality conditions at some point, but for now we’ll just summarize the
punchline: in a convex optimization problem, a point x will be optimal if the negative
gradient belongs to NC(x), i.e. roughly if the direction we’d like to move makes atleast a
90-degree angle with every direction that we can move in.

1.5 The Separating and Supporting Hyperplane The-

orems

Theorem 1.6 (Separating Hyperplane) If C and D are non-empty convex sets which
are disjoint, i.e. C ∩D = ∅, then there exists a separating hyperplane, i.e. a, b such that,

aTx ≤ b, for all x ∈ C,
aTx ≥ b, for all x ∈ D.

2.5 Separating and supporting hyperplanes 47

E1

E2

E3

Figure 2.18 Three ellipsoids in R2, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
E1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., E3). E3 is not minimal for the same reason. The ellipsoid
E2 is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in E2.

D

C

a

aT x ≥ b aT x ≤ b

Figure 2.19 The hyperplane {x | aT x = b} separates the disjoint convex sets
C and D. The affine function aT x − b is nonpositive on C and nonnegative
on D.

Theorem 1.7 (Supporting Hyperplane) If C is a non-empty convex set, and x0 ∈ boundary(C),
then there is a vector a such that,

aT (x− x0) ≤ 0, for all x ∈ C.

The latter has an interesting converse, if the set C is closed (check what this means if you’re
not familiar with it), and has a non-empty interior, and has a supporting hyperplane at
every point then C must be convex.
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2.6 Dual cones and generalized inequalities 51

C

a

x0

Figure 2.21 The hyperplane {x | aT x = aT x0} supports C at x0.

that the point x0 and the set C are separated by the hyperplane {x | aT x = aT x0}.
The geometric interpretation is that the hyperplane {x | aT x = aT x0} is tangent
to C at x0, and the halfspace {x | aT x ≤ aT x0} contains C. This is illustrated in
figure 2.21.

A basic result, called the supporting hyperplane theorem, states that for any
nonempty convex set C, and any x0 ∈ bdC, there exists a supporting hyperplane to
C at x0. The supporting hyperplane theorem is readily proved from the separating
hyperplane theorem. We distinguish two cases. If the interior of C is nonempty,
the result follows immediately by applying the separating hyperplane theorem to
the sets {x0} and intC. If the interior of C is empty, then C must lie in an affine
set of dimension less than n, and any hyperplane containing that affine set contains
C and x0, and is a (trivial) supporting hyperplane.

There is also a partial converse of the supporting hyperplane theorem: If a set
is closed, has nonempty interior, and has a supporting hyperplane at every point
in its boundary, then it is convex. (See exercise 2.27.)

2.6 Dual cones and generalized inequalities

2.6.1 Dual cones

Let K be a cone. The set

K∗ = {y | xT y ≥ 0 for all x ∈ K} (2.19)

is called the dual cone of K. As the name suggests, K∗ is a cone, and is always
convex, even when the original cone K is not (see exercise 2.31).

Geometrically, y ∈ K∗ if and only if −y is the normal of a hyperplane that
supports K at the origin. This is illustrated in figure 2.22.

Example 2.22 Subspace. The dual cone of a subspace V ⊆ Rn (which is a cone) is
its orthogonal complement V ⊥ = {y | vT y = 0 for all v ∈ V }.

The proofs of these theorems (at least in the case where the sets are closed and bounded) is
straightforward (and explicit) – see BV, Section 2.5 if you are curious.

1.6 Operations which Preserve Convexity

There are some important operations which preserve convexity of sets:

1. Intersection: The intersections of convex sets is a convex set.

2. Scaling and Translation: If C is convex, then

aC + b := {ax+ b : x ∈ C},

is convex for any a, b.

3. Affine Images and Pre-Images: Let us define f(x) = Ax + b to be an affine
function. If C is a convex set, then,

f(C) = {f(x) : x ∈ C}

is also a convex set. Also,

f−1(C) = {x : f(x) ∈ C},

is a convex set.

There are a couple more that are more involved but useful to know (we may not have time
to cover this in lecture, in which case we will re-visit it when we need it).
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1. Perspective: The perspective function P : Rd×R++ 7→ R (where R++ is the strictly
positive reals), is defined as:

P (x, t) = x/t.

If C ⊆ dom(P ) is a convex set, then its image P (C) is a convex set, and similarly if D
is convex then P−1(D) is convex.

2. Linear-Fractional: The linear fractional function for a given A, b, c, d is given by:

f(x) =
Ax+ b

cTx+ d
.

If C ⊆ dom(f) is a convex set, then its image f(C) is a convex set, and similarly if D
is convex then f−1(D) is convex.

Conditional Probability Set: This is an example of using the linear-fractional image to
characterize convexity. Let U, V be random variables over {1, . . . , n} and {1, . . . ,m}. Let
C ⊆ Rnm be a set of joint distributions for U, V , i.e., each p ∈ C defines joint probabilities

pij = P(U = i, V = j)

Let D ⊆ Rnm contain corresponding conditional distributions, i.e., each q ∈ D defines

qij = P(U = i|V = j)

Assume C is convex. Let’s prove that D is convex. Write

D =
{
q ∈ Rnm : qij =

pij∑n
k=1 pkj

, for some p ∈ C
}

= f(C)

where f is a linear-fractional function, hence D is convex.


