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24.1 Recap of Minimax Hypothesis Testing

In the previous lecture, we introduced minimax hypothesis testing for the situation where
we are given some data X1, . . . , Xn ∈ P and we want to distinguish the following general
hypotheses:

H0 : P ∈ P0

H1 : P ∈ P1(ε) := P1 ∩ {P : ρ(P,P0) > ε}.

Further, we defined a test function φT (X1, . . . , Xn) ∈ {0, 1} (φT = 1 means reject the null),
which allowed us to define the risk of our test as a function of ε:

Rε(T ) = sup
P∈P0

EPφT + sup
P∈P1(ε)

EP (1− φT ) (24.1)

and hence the minimax test is the one that minimizes the above risk, i.e.

T̂ = arg min
T

Rε(T ) (24.2)

We then defined the critical radius as some ε∗ such that for some constants C1 and C2,
infT RC1ε∗(T ) ≤ 1

6
and infT RC2ε∗(T ) ≥ 1

3
. Roughly, when the null and alternate are separated

by at least some large constant times the critical radius then the risk of the best test can be
made small, and when the null and alternate are separated by less than some small constant
times ε∗ then no test can distinguish them (in the minimax sense). The choice of constants
in this definition turn out to be unimportant. One way to see this is to see that if you had
a non-trivial test (i.e. with risk < 1) then you could repeat the test a few times (on split
samples) and combine the results – using a Hoeffding bound you can see that the risk of the
test will get exponentially smaller in the number of times you repeat the test.

Additionally, we proved an upper bound on the risk for the gaussian mean testing problem
showing that for the test statistic T =

∑d
i=1 y

2
i and test function φT = 1{T ≥ E0T +

C
√

Var0T}, if E1T − E0T ≥ C
(√

Var0(T ) +
√

Var1(T )
)

, then R(T ) ≤ 1
C2 .
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Perhaps most importantly, we compared the scaling of the critical radius between this testing
problem and estimation and noted that for the minimax testing problem

ε∗ � σ
d1/4√
n

(24.3)

whereas for the estimation problem

ε∗ � σ

√
d

n
(24.4)

In this lecture, we further explore why the discrepancy in these rates exists. In particular,
we draw connections between the aforementioned results an functional estimation.

24.2 Looking at the test statistic as a functional to

estimate

Suppose that we observe Y ∼ N (θ∗, σ2Id) and we are interested in estimating the functional
T =

∑d
i=1 θ

∗
i
2 = ‖θ∗‖22. Of course, we could directly estimate T using the plug-in estimator,

i.e.

T̂ =
d∑
i=1

y2i (24.5)

However, T̂ is biased, i.e. ET̂ = T + σ2d and hence we obtain the scaling of the risk

E(T̂ − T )2 = (ET̂ − T )2 + Var(T̂ )

= ((T + σ2d)− T )2 + Var(T̂ )

� σ4d2 + Var(T̂ )

We could de-bias our estimator using T̂ =
∑d

i=1 y
2
i − σ2d. We will explore this idea of de-

biasing further in the next lecture. It is however worth noting that for the purpose of testing
this bias is irrelevant (it simply shifts the distribution of the statistic under both the null
and the alternate but does not affect the risk of the test in any meaningful way).
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24.3 Lower Bounds

Now, we want to argue that there isn’t a better test. First, we define a different testing
problem that allows us to operate in the world of testing a simple null against a simple
alternative.

H0 : θ∗ = 0

H1 : θ∗ ∼ εSd−1

where we then have Y ∼ N (θ∗, σ2Id). All of the vectors on εSd−1 are by definition ε away
from P0.

Let us denote the distribution under the null as P0 (just N(0, σ2Id)) and under the alternate
by P1 (this is the infinite mixture distribution defined above by sampling θ∗ ∼ εSd−1 and
Y ∼ N (θ∗, σ2Id).

Let’s investigate the risk of the optimal test T . By the Neyman-Pearson lemma we know
the optimal test is the likelihood ratio test (and we know its risk exactly).

R(T ) = 1−TV(P0, P1)

= 1− 1

2
E0 |

p1
p0
− 1 |

= 1− 1

2
E0 | L− 1 |

≥ 1− 1

2

√
Var0(L)

= 1− 1

2

√
χ2(P0, P1)

where L is the likelihood ratio between the alternate and null distributions. In order to lower
bound the minimax risk, it is thus sufficient to show that if the null and alternate are not
sufficiently well-separated then Var0(L)→ 0.

We would like to understand the variance of L, i.e. E0L
2 − 1. Let’s re-write L in terms of

the actual probability density functions.
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L =
p1(y)

p0(y)

=
Eθ∗∼εSd−1 exp{−‖y−θ

∗‖2
2σ2 }

exp{−‖y‖
2

2σ2 }

= Eθ∗∼εSd−1 exp{−‖θ
∗‖2

2σ2
+
yT θ∗

σ2
}

= exp{−ε
2

2σ2
}Eθ∗∼εSd−1 exp{y

T θ∗

σ2
}

Turning our attention back to the computation of E0L
2:

E0L
2 = E0

[
exp

{−ε2
σ2

}
Eθ∗,θ̃ exp

{yT (θ̃ + θ∗)

2σ2

}]

= exp
{−ε2
σ2

}
Eθ∗,θ̃ exp

{‖θ̃ + θ∗‖22
2σ2

}
= exp

{−ε2
σ2

}
Eθ∗,θ̃ exp

{ ε2

2σ2
+

ε2

2σ2
+

2θ̃T θ∗

2σ2

}
= Eθ∗,θ̃ exp

{ θ̃T θ∗
σ2

}

Now, we want to use the above form to argue that the variance of the likelihood ratio is
small.

E0L
2 = Eθ∗,θ̃∼εSd−1 exp

{ θ̃T θ∗
σ2

}
= Eθ∗,θ̃∼Sd−1 exp

{ε2θ̃T θ∗
σ2

}

If θ∗ ∼
√
dSd−1, this implies that θ∗ is C-subgaussian. For more information on this, see [2].

Thus, for a fixed vector, v,
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E0L
2 = Eθ∗∼Sd−1 exp

{
ε2θ∗Tv

σ2

}

= Eθ∗∼√dSd−1 exp

{
ε2θ∗Tv√
dσ2

}

≤ exp

{
ε4 ‖v‖2C2

2dσ4

}

≤ 1 +
2C2ε4

2dσ4

where the second to last line holds from the subgaussian condition, and the last line holds if
C2ε4

2dσ4 ≤ 1. We justify this last line of reasoning by recalling that exp(x) ≤ 1 + 2x if x ≤ 1.

If C2ε4

dσ4 → 0, then Var0(L)→ 0 and R(T ) ≥ 1− 1
2

√
Var0(L). I.e., if ε4

dσ4 ≤ C, then R(T ) ≥ 1
3
,

and hence if ε∗ ≤ Cσd
1
4 , then R(T ) ≥ 1

3
. This is precisely the lower bound we set out to

show.

For more exploration of lower bound techniques like the one above, look at Ingster and
Suslina [1].

24.4 Brief Recap

Here, we have explored why testing rates are better than estimation rates. Namely, with
estimation we observed

ε∗ �
√
d

n
(24.6)

whereas for testing, we observed

ε∗ � d1/4√
n

(24.7)
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