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23.1 Recap of non-parametric least squares

1. Wainwright’s book Theorem 13.5: Suppose that the shifted function class F∗ =
{f − f ∗ : f ∈ F} is star-shaped, and δn satisfies the critical inequality

Gn(δn;F∗)
δn

≤ δn
2σ
,

then for any t ≥ δn, the nonparametric least-squares estimate f̂ satisfies the bound

P
(
‖f̂ − f ∗‖2n ≥ 16tδn

)
≤ e−

nδn
2σ2 .

The mean squared error is upper bounded by

E‖f̂ − f ∗‖2n . δ2n.

2. Adaptivity: the rates can vary as a function of f ∗, since the local Gaussian width
Gn(δn;F∗) can vary as the true function f ∗ varies. Intuitively, if f ∗ is “simple”,
Gn(δn;F∗) can be small, and one would get a faster rate automatically.

3. Oracle inequality, Wainwright’s book Theorem 13.13: Suppose that ∂F =
{f1 − f2 : f1, f2 ∈ F} is star-shaped, and δn satisfies the critical inequality

Gn(δn; ∂F)

δn
≤ δn

2σ
,

then for any t ≥ δn, the the nonparametric least-squares estimate f̂ satisfies the bound

‖f̂ − f ∗‖2n ≤ inf
γ∈(0,1)

{
1 + γ

1− γ
‖f − f ∗‖2n +

c0
γ(1− γ)

tδn

}
for all f ∈ F

with probability greater than 1− c1e−c2
nδn
σ2 .
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23.2 Minimax hypothesis testing

Given samples X1, . . . , Xn ∼ P , consider the hypothesis testing:

null H0 : P ∈ P0;

alternative H1 : P ∈ P1(ε) = P1 ∩ {P : ρ(P,P0) ≥ ε}.

Define the test function as φT (X1, . . . , Xn) ∈ {0, 1}, where φT = 1 means to reject the null
and φT = 0 means to retain the null. Define the risk as

Rε(T ) = sup
P∈P0

E[φT ]︸ ︷︷ ︸
Type I error

+ sup
P∈P1(ε)

E[1− φT ]︸ ︷︷ ︸
Type II error

.

The minimax test is T̂ = arg minT Rε(T ).

We will define the critical radius to be some ε∗ such that

inf
T
RC1ε∗(T ) ≤ 1/6,

inf
T
RC2ε∗(T ) ≥ 1/3.

23.3 Gaussian mean testing

Consider y = θ∗ + η, where η ∼ N(0, σ2Id). The two hypotheses are

H0 : θ∗ = 0, P0 = {N(0, σ2Id)};
H1 : ‖θ∗‖2 ≥ ε, P1(ε) = {N(θ∗, σ2Id) : ‖θ∗‖2 ≥ ε}.

In the general case, we observe n samples y1, . . . , yn and the critical radius scales as

ε∗ � σ
d1/4√
n
.

As a comparison, the minimax estimation rate is

ε∗ � σ

√
d

n
.

In general, it is often the case that minimax testing is a statistically easier problem than its
estimation counterpart.

This problem is also related to two problems that you might come across in the minimax
hypothesis testing literature.
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• Our Gaussian mean testing problem is a special case of the problem of signal detection.
Broadly, this is the problem of detecting the presence of a signal (generally, testing
θ∗ = 0 against some class of alternatives).

• One can also view this as a multiple testing problem. Concretely, for each hypothesis
{1, . . . , d} we can convert the yi to a p-value (just use Φ(|yi|), where Φ(·) is the standard
Gaussian CDF). Now, our mean testing problem is equivalent to the problem of global
null testing. In that literature, one might study the minimax power against various
types of alternatives (sparse, dense, . . .) and our setup roughly corresponds to testing
against a possibly dense alternative.

In the remainder, we suppose that the sample size n = 1. One can replace σ by σ/
√
n in

case of n samples.

23.3.1 Upper bound

Design the test statistics T =
∑d

i=1 y
2
i , and the test function φT = 1{T ≥ E0T+C

√
Var0(T )}.

Lemma 23.1 If E1T − E0T ≥ C(
√

Var0(T ) +
√

Var1(T )), then R(T ) ≤ 2/C2.

Proof: Type I error is bounded by Chebshev’s inequality as

P0(T ≥ E0T + C
√

Var0(T )) ≤ 1/C2.

Type II error is bounded similarly as

P1(T ≤ E0T + C
√

Var0(T )) = P1(T − E1T ≤ E0T − E1T + C
√

Var0(T ))

≤ P1(T − E1T ≤ −C
√

Var1(T )) ≤ 1/C2.

Combine them to obtain

R(T ) = sup
P∈P0

E[φT ] + sup
P∈P1(ε)

E[1− φT ] ≤ 2/C2.

The means and variances are calculated as following:

• E0T = σ2d.

• E1T = ‖θ∗‖22 + σ2d.

• Var0(T ) =
∑d

i=1 Var0(y
2
i ) = 2σ4d, where

Var0(y
2
i ) = E[η4i ]− (E[η2i ])

2 = 3σ4 − σ4 = 2σ4.
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• Var1(T ) =
∑d

i=1 Var1(y
2
i ) = 4σ2‖θ∗‖22 + 2σ4d, where

Var1(y
2
i ) = Var(θ∗i

2 + 2θ∗i ηi + η2i ) = Var(2θ∗i ηi + η2i )

= E[(2θ∗i ηi + η2i )
2]− (E[2θ∗i ηi + η2i ])

2

= E[4θ∗i
2η2i + η4i ]− σ4

= 4σ2θ∗i
2 + 2σ4.

The condition E1T−E0T ≥ C(
√

Var0(T )+
√

Var1(T )) is ‖θ∗‖22 ≥ C(
√

2σ4d+
√

2σ4d+ 4σ2‖θ∗‖22).
Therefore as long as ‖θ∗‖2 & σd1/4, the test will have a low risk R(T ) ≤ 1/6. This in turn
proves our upper bound on the critical radius.

23.3.2 Lower bound

If we are testing a simple null against a simple alternative we know the optimal test, and
we understand its Type I and Type II errors (by the Neyman-Pearson Lemma). To use
this however one needs to transform the hypotheses into simple null v.s. simple alternative.
Design the Bayesian counterpart as

H0 : θ∗ = 0;

H1 : θ∗ ∼ εSd−1,

where Sd−1 denotes the d-dimensional unit sphere, and the parameter ε � σd1/4.

Remark: It is crucial to introduce the spherical uniform sampling as the alternative hy-
pothesis. It does not work if one uses a one-point alternative hypothesis

H0 : θ∗ = 0;

H1 : θ∗ = ε(1/
√
d, . . . , 1/

√
d).

In this case, the minimax test function is φT = 1{
∑d

i=1 yi ≥ ε
√
d/2}, and the minimax risk

is

R(T ) = 2P0

(
d∑
i=1

yi ≥
ε

2

√
d

)
= 2Φ

( ε

2σ

)
,

where Φ(·) is the tail distribution function of the standard Gaussian distribution. In order
to have a risk R(T ) � 1, the parameter ε � σ. The dimension d disappears, and the problem
degenerates into a one-dimensional hypothesis testing problem.

To be continued...


