
36-705: Intermediate Statistics Fall 2019

Lecture 27: November 6
Lecturer: Siva Balakrishnan

Today we will continue discussing the bootstrap, and then try to understand why it works
in a simple case. As we discussed in the last lecture the basic idea of the bootstrap is to
construct an estimate P̂ of the distribution we obtain samples from. We then sample new
datasets from P̂ instead, i.e. we construct datasets:

S∗1 = {X∗11, . . . , X∗n1} ∼ P̂

S∗2 = {X∗12, . . . , X∗n2} ∼ P̂

...

S∗m = {X∗1m, . . . , X∗nm} ∼ P̂

for some large value m, and compute our estimator on each dataset {θ̂∗(S∗1), . . . , θ̂∗(S∗m)}. To

approximate the distribution of θ̂−θ (which we do not have access to) we use the distribution

of θ̂∗ − θ̂. For the rest of today we will focus on the empirical bootstrap (i.e. we will take P̂
to be Pn).

As a preliminary to understanding the bootstrap let us consider a slightly simpler idea first.

27.1 Bootstrap variance estimate

To understand the idea, let us first consider the Monte-Carlo variance estimate. Suppose
we had an estimator θ̂n = g(X1, . . . , Xn) (this could be a complicated function), where

X1, . . . , Xn ∼ P and we want to estimate VarP (θ̂n).

Supposing that we knew P we could try to compute the variance analytically: this might be
difficult. The Monte-Carlo variance estimate would be to instead draw B samples of size n
from P , i.e. we draw, {X11, . . . , X1n}, . . . , {XB1, . . . , XBn} ∼ P , to compute our estimator

on each of these samples, i.e. compute θ̂
(1)
n , . . . , θ̂

(B)
n and then use the sample variance, i.e.

σ̂2
n =

1

B

B∑
i=1

(
θ̂(i)n

)2
−

(
1

B

B∑
i=1

θ̂(i)n

)2

.

By the LLN we have that σ̂2 p→ VarP (θ̂n). Unfortunately, we typically do not know P .

By now, you have already guessed the idea behind the bootstrap. The idea is to replace P
in the above procedure by the empirical distribution Pn. Here is the algorithm:
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Bootstrap Variance Estimator

1. Draw a bootstrap sample X∗1 , . . . , X
∗
n ∼ Pn. Compute θ̂∗n = g(X∗1 , . . . , X

∗
n).

2. Repeat the previous step, B times, yielding estimators θ̂∗n,1, . . . , θ̂
∗
n,B.

3. Compute:

ŝ2 =
1

B

B∑
j=1

(θ̂∗n,j − θ)2,

where θ = 1
B

∑B
j=1 θ̂

∗
n,j.

4. Output ŝ2.

Now, let us reason about this algorithm in a very simple case. Suppose our estimator is just
the sample mean, i.e.:

θ̂(X1, . . . , Xn) =
1

n

n∑
i=1

Xi,

then the bootstrap is using simulation to compute VarPn(θ̂). Let us calculate what this is:

VarPn(θ̂) = EX∗
1 ,...,X

∗
n∼Pn

(
1

n

n∑
i=1

X∗i

)2

−

(
1

n

n∑
i=1

Xi

)2

.

Let us denote X = 1
n

∑n
i=1Xi. Then,

VarPn(θ̂) = EX∗
1 ,...,X

∗
n∼Pn

(
1

n2

n∑
i=1

n∑
j=1

X∗iX
∗
j

)
−X2

=
1

n
EX∗∼Pn(X∗)2 +

n− 1

n
X

2 −X2

=
1

n

[
1

n

n∑
i=1

X2
i −X

2

]
=
σ̂2

n
.

So we see that, the bootstrap is using simulation to compute VarPn(θ̂) which for the sample
mean is precisely our usual estimate of the variance of the sample mean, i.e. σ̂2/n.

27.2 Bootstrap Confidence Intervals

The bootstrap can also be used to obtain confidence intervals. If your estimator has a
normal limit then you could just use a Wald interval with the bootstrap variance estimate,
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i.e. Cn = [θ̂n − ŝzα/2, θ̂n + ŝzα/2].

It is often more accurate to use the distribution of the bootstrap estimates itself to construct
the bootstrap confidence interval.

27.2.1 Hypothetical confidence interval

Suppose we knew the distribution of our estimator, in particular suppose we knew the
distribution of

√
n(θ̂n − θ). Let us denote the distribution by G and denote its α/2 and

1− α/2 quantiles by gα/2 and g1−α/2.

Then a 1− α confidence interval would be:

Cn =

[
θ̂n −

g1−α/2√
n
, θ̂n −

gα/2√
n

]
.

This might seem a little strange, but this is probably because you are used to confidence
intervals based on the normal distribution which has symmetric quantiles. To verify this,

P(θ ∈ Cn) = P
(
gα/2 ≤

√
n(θ̂n − θ) ≤ g1−α/2

)
= 1− α/2− α/2 = 1− α.

Again the point is that we do not know the distribution G above so we try to approximate
this using the bootstrap.
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27.2.2 Bootstrap confidence interval algorithm

Bootstrap Confidence Interval

1. Draw a bootstrap sample X∗1 , . . . , X
∗
n ∼ Pn. Compute θ̂∗n = g(X∗1 , . . . , X

∗
n).

2. Repeat the previous step, B times, yielding estimators θ̂∗n,1, . . . , θ̂
∗
n,B.

3. Let

Ĝ(t) =
1

B

B∑
j=1

I
(√

n(θ̂∗n,j − θ̂n
)
≤ t).

4. Let

Cn =

[
θ̂n −

g1−α/2√
n
, θ̂n −

gα/2√
n

]
where gα/2 = Ĝ−1(α/2) and g1−α/2 = Ĝ−1(1− α/2).

5. Output Cn.

27.3 Justifying the Bootstrap

This part is going to be a little bit technical. Before we get into it, we should try to figure
out what it means to “justify the bootstrap”. Roughly, we want that the quantiles of the
bootstrap distribution of our statistic should be close to the quantiles its actual distribution,
i.e. suppose we define:

F̂n(t) = Pn(
√
n(θ̂∗n − θ̂n) ≥ t|X1, . . . , Xn),

to be the CDF of the bootstrap distribution, and

Fn(t) = P(
√
n(θ̂n − θ) ≥ t),

to be the CDF of the true sampling distribution of our statistic, then the bootstrap works if
for instance:

sup
t
|F̂n(t)− Fn(t)| → 0.

This turns out to be true in quite a bit of generality, only requiring mild conditions (Hadamard
differentiability, see Bootstrap chapter in van der Vaart), but we will prove it in the simplest

case: when θ̂n is a sample mean. In this case there are much simpler ways to construct
confidence intervals (using Normal approximations) but that is not really the point.
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Suppose that X1, . . . , Xn ∼ P where Xi has mean µ and variance σ2. Suppose we want to
construct a confidence interval for µ.

Let µ̂n = 1
n

∑n
i=1Xi and define

Fn(t) = P(
√
n(µ̂n − µ) ≤ t). (27.1)

We want to show that

F̂n(t) = P
(√

n(µ̂∗n − µ̂n) ≤ t
∣∣∣ X1, . . . , Xn

)
is close to Fn.

Theorem 27.1 (Bootstrap Theorem) Suppose that µ3 = E|Xi|3 <∞. Then,

sup
t
|F̂n(t)− Fn(t)| = OP

(
1√
n

)
.

To prove this result, let us recall that Berry-Esseen Theorem.

Theorem 27.2 (Berry-Esseen Theorem) Let X1, . . . , Xn be i.i.d. with mean µ and vari-
ance σ2. Let µ3 = E[|Xi − µ|3] < ∞. Let Xn = n−1

∑n
i=1Xi be the sample mean and let Φ

be the cdf of a N(0, 1) random variable. Let Zn =
√
n(Xn−µ)

σ
. Then

sup
z

∣∣∣P(Zn ≤ z)− Φ(z)
∣∣∣ ≤ 33

4

µ3

σ3
√
n
. (27.2)

Proof of the Bootstrap Theorem. Let Φσ(t) denote the cdf of a Normal with mean 0
and variance σ2. Let σ̂2 = 1

n

∑n
i=1(Xi − µ̂n)2. Thus, σ̂2 = Var(

√
n(µ̂∗n − µ̂n)|X1, . . . , Xn).

Now, by the triangle inequality,

sup
t
|F̂n(t)− Fn(t)| ≤ sup

t
|Fn(t)− Φσ(t)|+ sup

t
|Φσ(t)− Φσ̂(t)|+ sup

t
|F̂n(t)− Φσ̂(t)|

= I + II + III.

Let Z ∼ N(0, 1). Then, σZ ∼ N(0, σ2) and from the Berry-Esseen theorem,

I = sup
t
|Fn(t)− Φσ(t)| = sup

t

∣∣P (√n(µ̂n − µ) ≤ t
)
− P (σZ ≤ t)

∣∣
= sup

t

∣∣∣∣P(√n(µ̂n − µ)

σ
≤ t

σ

)
− P

(
Z ≤ t

σ

)∣∣∣∣ ≤ 33

4

µ3

σ3
√
n
.

Using the same argument on the third term, we have that

III = sup
t
|F̂n(t)− Φσ̂(t)| ≤ 33

4

µ̂3

σ̂3
√
n
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Fn

F̂n

L

L̂

F

O(1/
√
n)

OP (1/
√
n)

OP (1/
√
n)

O(1/
√
B)

1

Figure 27.1: The distribution Fn(t) = P(
√
n(θ̂n − θ) ≤ t) is close to some limit distribution

L. Similarly, the bootstrap distribution F̂n(t) = P(
√
n(θ̂∗n − θ̂n) ≤ t|X1, . . . , Xn) is close to

some limit distribution L̂. Since L̂ and L are close, it follows that Fn and F̂n are close. In
practice, we approximate F̂n with its Monte Carlo version F which we can make as close to
F̂n as we like by taking B large.
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where µ̂3 = 1
n

∑
i=1 |Xi − µ̂n|3 is the empirical third moment. By the strong law of large

numbers, µ̂3 converges almost surely to µ3 and σ̂ converges almost surely to σ. So, almost
surely, for all large n, µ̂3 ≤ 2µ3 and σ̂ ≥ (1/2)σ and III ≤ 33

4
4µ3√
n
. From the fact that

σ̂−σ = OP (
√

1/n) it may be shown that II = supt |Φσ(t)−Φσ̂(t)| = OP (
√

1/n). (This may
be seen by Taylor expanding Φσ̂(t) around σ.) This completes the proof. �

So far we have focused on the mean. Similar theorems may be proved for more general
parameters. The details are complex so we will not discuss them here.

27.4 Failure of the Bootstrap

As usual when we need a counterexample we try the uniform distribution. Suppose that
X1, . . . , Xn ∼ U [0, θ] and we try to bootstrap the MLE to construct a confidence interval
for θ.

The natural bootstrap confidence interval would have no coverage, even asymptotically, be-
cause on each of the bootstrap samples, as well as on the original sample we underestimate θ.


