
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 9: September 19
Lecturer: Siva Balakrishnan

9.1 Review and Outline

Last class we discussed:

• Statistical estimation broadly

• Pont estimation

• Bias-Variance tradeoff

• Confidence sets

In this lecture we will go into more detail about point estimation. Particularly, we will
discuss methods for constructing estimators. This is in Chapter 7 of Casella and Berger. In
the next lecture we will discuss methods for evaluating estimators.

9.2 Finding estimators

Broadly point estimation is aligned with the general statistical pursuit of trying to under-
stand an underlying population from a sample. Particularly, under the hypothesis that the
sample was generated from some parametric statistical model, a natural way to understand
the underlying population is by estimating the parameters of the statistical model.

One can of course wonder what happens if the model is wrong? Or where do models really
come from? In some rare cases, we actually know enough about our data to hypothesise
a reasonable model. Most often however, when we specify a model, we do so hoping that
it can provide a useful approximation to the data generation mechanism. The George Box
quote is worth remembering in this context: “all models are wrong, but some are useful.”
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9.2.1 Method of moments

We saw this idea before we will see a couple of other examples today. Broadly, the idea is
that we can estimate the sample moments in a straightforward way:

m1 =
1

n

n∑
i=1

Xi,

m2 =
1

n

n∑
i=1

X2
i ,

...

mk =
1

n

n∑
i=1

Xk
i .

On the other hand the population moments are some functions of the unknown parameters.
We can denote the population moments as: µ1(θ1, . . . , θk), . . . , µk(θ1, . . . , θk).

The method-of-moments prescribes estimating the parameters: θ1, . . . , θk by solving the
system of equations:

m1 = µ1(θ1, . . . , θk)

...

mk = µk(θ1, . . . , θk).

We already saw an application of this idea to estimating the mean and variance of a Gaussian:

Example 1: If X1, . . . , Xn ∼ N(θ, σ2), we would solve:

1

n

n∑
i=1

Xi = θ, and
1

n

n∑
i=1

X2
i = θ2 + σ2,

to obtain the estimators:

θ̂ =
1

n

n∑
i=1

Xi

σ̂2 =
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

=
1

n

n∑
i=1

(
Xi −

1

n

n∑
j=1

Xj

)2

,
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which of course are natural estimators of these quantities. You can see that the method-of-
moments estimators can be biased since in this example the estimator for the variance has
non-zero bias.

Example 2: Suppose X1, . . . , Xn ∼ Bin(k, p), i.e. each Xi is the sum of k Ber(p) RVs,
and that both k and p are unknown. Casella and Berger point out that this model has been
used to model crimes, where usually neither the total number of crimes k nor the reporting
rate p are known.

Let us first compute the first two moments of the binomial:

µ1 = kp

µ2 = kp(1− p) + k2p2.

Denoting,

X̄ =
1

n

n∑
i=1

Xi,

we solve the system of equations:

X̄ = kp

1

n

n∑
i=1

X2
i = kp(1− p) + k2p2.

This yields the estimators:

p̂ =
X̄ − 1

n

∑n
i=1(Xi − X̄)2

X̄
,

k̂ =
X̄2

X̄ − 1
n

∑n
i=1(Xi − X̄)2

.

It is worth pointing out that in this case there are no a-priori “obvious” estimators for
the parameters of interest. Further, the method-of-moments estimators in this case can be
negative (while the true parameters cannot be). However, when the method-of-moments
estimator is negative it is because the sample mean is dominated by the sample variance -
which is a sign of excessive variability.

Another important use of the method-of-moments in statistics is in approximating complex
distributions by simpler ones. This is often called moment matching.

Example 3: The simplest example of moment matching comes from the central limit
theorem. Suppose that RVs X1, . . . , Xn are i.i.d with known distribution (it suffices if just
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their means and variances are known). Typically the exact distribution of:

Sn =
1

n

n∑
i=1

Xi,

can be quite unwieldy. One possibility would be to try to approximate this distribution by
that of a Gaussian distribution. We do this via the method of moments:

θ̂ = E(Sn) =
1

n

n∑
i=1

µi,

σ̂2 = E(Sn − E(Sn))2 =
1

n

n∑
i=1

σ2
i .

Thus we could approximate the distribution of the sum by the Gaussian N(θ̂, σ̂2). More
generally, we can always try to approximate a complex distribution by a much simpler one
in this way.

9.2.2 Maximum Likelihood Estimation

The most popular technique to derive estimators is via the principle of maximum likelihood.
Suppose that X1, . . . , Xn ∼ fθ where fθ denotes either the pmf or pdf of the population.

The likelihood function is defined by:

L(θ|X1, . . . , Xn) =
n∏
i=1

fθ(Xi).

A maximum likelihood estimator of θ based on the sample {X1, . . . , Xn} is any value of
the parameter at which the function L(θ|X1, . . . , Xn) is maximized (as a function of θ with
X1, . . . , Xn held fixed).

Unlike the method-of-moments estimator we can see that the MLE will always obey natural
parameter restrictions, i.e. the range of the MLE estimator is the same as the range of the
parameter. Intuitively, the MLE is just the value of the parameter which is most likely to
have generated the sample and thus is a natural choice as a point estimate. It also has many
optimality properties in certain settings: indeed, much of the early theoretical development
in statistics revolved around showing the optimality of MLE in various senses.

There are some common difficulties with using the MLE: the first is computational, how do
we find the global maximum of the likelihood function and how do we verify/certify that it
is in fact the global maximum? The next two are related to numerical sensitivity: (1) we can
often only approximately maximize the likelihood (using a numerical procedure like gradient
descent) so we need that the likelihood is a well-behaved function of the parameters. (2)
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Similarly, it is also natural to hope that the estimator is a well-behaved function of the data,
i.e., we would hope that a slightly different sample would not result in a vastly different
MLE.

The typical way to compute the MLE (suppose that we have k unknown parameters) is to
either analytically or numerically solve the system of equations:

∂

∂θi
L(θ|X1, . . . , Xn) = 0 i = 1, . . . , k.

Example 1: Suppose X1, . . . , Xn ∼ N(θ, 1), then the likelihood function is given as:

L(θ|X1, . . . , Xn) =
n∏
i=1

1√
2π

exp(−(Xi − θ)2/2).

A frequently useful simplification is to observe that if θ maximizes L(θ|X1, . . . , Xn) then θ
also maximizes logL(θ|X1, . . . , Xn). We can also of course ignore constants.

So we have that:

θ̂ = arg max
θ

logL(θ|X1, . . . , Xn) = arg min
θ

n∑
i=1

(Xi − θ)2.

So that we obtain:

θ̂ =
1

n

n∑
i=1

Xi.

We need to further verify that the second derivative (of the negative log-likelihood) is nega-
tive: in this case the second derivative is −2n.

Example 2: Suppose that X1, . . . , Xn ∼ Ber(p), then the log-likelihood is given by

logL(p|X1, . . . , Xn) ∝
n∑
i=1

Xi log p+ (1−Xi) log(1− p)

= nX̄ log p+ n(1− X̄) log(1− p),

which is maximized at

p̂ = X̄.

9.2.3 Invariance of the MLE

Roughly, the invariance property of the MLE states: suppose that the MLE for a parameter
θ is given by θ̂ then the MLE for a parameter τ(θ) is τ(θ̂).

Let us denote the likelihood as a function of the transformed parameter by L∗(η|X1, . . . , Xn).
For invariance we need to consider two cases:
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1. τ is an invertible transformation: In this case there is a mapping from the likelihood
of a point η to a point θ = τ−1(η), i.e.

L∗(η|X1, . . . , Xn) = L(τ−1(η)|X1, . . . , Xn),

and we have that the MLE for η:

η̂ = arg sup
η
L∗(η|X1, . . . , Xn) = arg sup

η
L(τ−1(η)|X1, . . . , Xn) = τ(arg sup

θ
L(θ|X1, . . . , Xn)) = τ(θ̂).

2. When τ is not invertible: In this case, it is possible that several parameters θ1, θ2, . . .
map to the same value η, so we need some care in defining the induced likelihood.

Particularly, if we define:

L∗(η|X1, . . . , Xn) = sup
θ:τ(θ)=η

L(θ|X1, . . . , Xn),

then one can verify that the MLE is invariant.

We will discuss other properties of the MLE in future lectures.

9.3 Bayes Estimators

The third general method to derive estimators is a bit different philosophically from the
first two. At a high-level we need to understand the Bayesian approach (we will of course
stay clear of any philosophical questions): in our approaches so far (so-called “frequentist”
approaches) we assumed that there was a fixed but unknown true parameter, and that we
observed samples drawn i.i.d from the population (whose density/mass function/distribution
was indexed by the unknown parameter).

In the Bayesian approach we consider the parameter θ to be random. We have a prior belief
of the distribution of the parameter, which we update after seeing the samples X1, . . . , Xn.
We update our belief using Bayes rule and the updated distribution is known as the posterior
distribution.

We denote the prior distribution by π(θ), and the posterior distribution as π(θ|X1, . . . , Xn).
Using Bayes’ rule we have that:

π(θ|X1, . . . , Xn) =
π(θ)L(θ|X1, . . . , Xn)∫
θ
π(θ)L(θ|X1, . . . , Xn)

.

The posterior distribution is a distribution over the possible parameter values. In this lecture
we are focusing on point estimation so one common candidate is the posterior mean (i.e. the
expected value of the posterior distribution).
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Ignoring any philosophical questions, one can view this methodology as a way to generate
candidate point estimators, by specifying reasonable prior distributions. In practice how-
ever this calculation is hard to do analytically, so we often end up specifying priors out of
convenience rather than any real prior belief. Particularly, a convenient choice of prior dis-
tribution is one for which the posterior distribution belongs to the same family as the prior
distribution: such priors are called conjugate priors.

Example 1: Binomial Bayes estimator: Suppose X1, . . . , Xn ∼ Ber(p). We will first need
to define the Beta distribution: a RV has a Beta distribution with parameters α and β if its
density on [0, 1] is

f(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1.

For us it will be sufficient to ignore the normalizing part and just remember that the Beta
density:

f(p) ∝ pα−1(1− p)β−1.

The mean of the Beta distribution is: α/(α + β).

Let us denote

X̄ =
1

n

n∑
i=1

Xi.

There are two candidate priors we will consider:

1. The flat/uninformative prior: π(p) = 1 for 0 ≤ p ≤ 1. In this case, the posterior
density is:

f(p|X1, . . . , Xn) ∝ pnX̄(1− p)n(1−X̄)

= p(nX̄+1)−1(1− p)(n(1−X̄)+1)−1.

This is just a Beta(nX̄ + 1, n(1− X̄) + 1) distribution. So our estimate (the posterior
mean) would be:

p̂ =
nX̄ + 1

n+ 2

=
n

n+ 2
X̄ +

2

n+ 2

1

2

= wX̄ + (1− w)
1

2
,

which can be viewed as a convex combination of the MLE and the prior mean 1/2.
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2. The other common prior is the one that is conjugate to the bernoulli likelihood, i.e.
the Beta prior. A similar calculation as the one above will show that if use π(p) ∼
Beta(α, β), then the posterior distribution will also be a Beta distribution:

f(p|X1, . . . , Xn) ∼ Beta(α + nX̄, β + n(1− X̄)),

and our Bayes estimator would be:

p̂ =
α + nX̄

α + β + n
.

Example 2: Gaussian Bayes estimator: Here we suppose that our prior belief is that the
parameter has distribution N(µ, τ 2) and we observe X1, . . . , Xn drawn from N(θ, σ2). We
assume that σ2, µ, τ 2 are all known.

A fairly involved calculation in this case (see for instance Problem 1 of Chapter 11 of Wasser-
man) will show that the posterior distribution is also a Gaussian with parameters:

µ̂ =
nτ 2

σ2 + nτ 2

(
1

n

n∑
i=1

Xi

)
+

σ2

σ2 + nτ 2
(µ)

σ̂2 =
σ2τ 2

σ2 + nτ 2
,

which suggests the point estimate:

µ̂ =
nτ 2

σ2 + nτ 2

(
1

n

n∑
i=1

Xi

)
+

σ2

σ2 + nτ 2
(µ) .

Which can once again be seen as a convex combination of our prior belief and the MLE, i.e.:

µ̂ = w

(
1

n

n∑
i=1

Xi

)
+ (1− w)µ,

for some 0 ≤ w ≤ 1.


