
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 6: September 12
Lecturer: Siva Balakrishnan

6.1 Review and Outline

Last class we saw:

• Markov’s inequality

• Chebyshev’s inequality

• Exponential concentration (Mill’s inequality)

This class we will state another famous exponential concentration inequality, prove the weak
law of large numbers, and then talk about Op notation and then talk about convergence of
random variables.

6.2 Hoeffding’s inequality

The main drawback was that Mill’s inequality only applies to Gaussian random variables.
Another commonly useful exponential concentration inequality applies to bounded random
variables. This is called Hoeffding’s inequality.

Hoeffding’s inequality: Suppose that X1, . . . , Xn are independent and that, ai ≤ Xi ≤ bi,
and E[Xi] = 0. Then for any t > 0,
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We will not prove this one, but Wasserman’s book has a proof if you are curious.

Hoeffding’s inequality looks a bit different from the other inequalities we have seen yesterday,
but let us rearrange it a bit. Equivalently,
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This is more like the earlier inequalities, but notice that we don’t really have the standard
deviation any more. That said, if ai ≤ Xi ≤ bi then Var(Xi) ≤ (bi − ai)2.

Exercise: Prove the above fact.

So that:

Var

(
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n
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n2
,

and this will allow us to interpret Hoeffding’s inequality in a more familiar way. Roughly, it
says that the probability that the sample average is more than t standard deviations from
its expectation is at most exp(−2t2).

Let us now use Hoeffding’s inequality in our case study example of coin tosses. There each
random variable is between −1 and 1 so we have that by Hoeffding’s inequality:

P
(
|Y | ≥ 2t√

n

)
≤ 2 exp(−2t2).

Observe once again this inequality is similar to Chebyshev’s inequality on the left hand side,
i.e. the deviation is on the order of 1/

√
n but the right hand side is much smaller exp(−t2)

instead of 1/t2.

6.3 Sample Sizes and Exponential Concentration

Lets just do some basic calculations to get used to concentration inequalities. I am sampling
X1, . . . , Xn which are each i.i.d. 0 or +1 with some (unknown) probabilities. In order to
estimate the probability of 1 (i.e. the expected value of X), I use the estimate:

µ̂ =
1

n

n∑
i=1

Xi.

The variance of µ̂ is

Var(µ̂) =
µ(1− µ)

n
≤ 1

4n
.

Suppose I want to be 95% sure that my sample average is within 0.01 of the true average,
how many samples do I need?

1. If I only had Chebyshev’s inequality: Recall,

P(|µ̂− µ| ≥ t/(2
√
n)) ≤ 1

t2
,
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so that we need:

t

2
√
n
≤ 0.01

1

t2
≤ 0.05.

In particular, we would choose t =
√

1/0.05 ≈ 4.47, and conclude that I need ( t
0.02

)2 ≈
50000 samples.

2. If I instead had Hoeffding’s inequality: Recall that by Hoeffding’s inequality we would
have:

P(|µ̂− µ| ≥ t/
√
n) ≤ 2 exp(−t2/2),

so that we need:

t√
n
≤ 0.01

2 exp(−t2/2) ≤ 0.05.

In this case, we would use:

t =

√
− ln 0.025

2
≈ 1.36,

and need

n ≥ 18500,

samples. Roughly a 3-fold reduction. Of course the difference can be even more stark
if we change the requirements.

There is a slightly different take away here, which is that one can see that small impreci-
sions (using an upper bound on the variance instead of the exact variance or having only
approximately tight concentration inequalities) can have huge impacts on our sample size
requirements. This is sometimes troubling from a practical perspective. It is this fact that
often motivates large sample approximations - where we assume n → ∞ and then derive
very precise results about the distribution of various estimators. In essence, finite-sample
tail bounds can be loose but are always correct, large-sample theory can be much tighter
but is only approximately correct for finite sample-sizes.



6-4 Lecture 6: September 12

6.3.1 Confidence Intervals

We will cover this in much more detail later on but here is a quick preview. Hoeffding’s
inequality gives us a simple way to create a confidence interval for a binomial parameter p.
Fix α > 0 and let,

t =

√
1

2n
log(2/α).

By Hoeffding’s inequality,

P(|µ̂− p| ≥ t) ≤ 2 exp(−2nt2) = α.

Let C = (µ̂− t, µ̂+ t). Then,

P(p /∈ C) ≤ α.

Hence, the random interval C traps the true parameter value p with probability at least
1− α; we call C a 1− α confidence interval.

6.4 The Weak Law of Large Numbers

The weak law of large numbers essentially assures us that the average of independent and
identically distributed random variables “converges” to the expectation.

We will assume that X1, . . . , Xn are i.i.d with Var(X) < ∞. Then the weak law of large
numbers says that for any ε > 0,
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)
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as n→∞.

This type of convergence is quite common and has a name: it is called convergence in
probability. So the weak LLN tells us that the sample average converges to the population
average in probability. This is called the weak law because convergence in probability is often
referred to as weak convergence. We will discuss convergence more systematically soon.

Proof: The proof is a simple consequence of Chebyshev’s inequality. We have that for any
positive ε, via Chebyshev’s inequality:
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6.5 Introduction to Stochastic Convergence

The weak LLN is an example where we tried to reason about the limiting behaviour of a
sequence of random variables:

Yn =
1

n

n∑
i=1

Xi.

In statistics we commonly estimate parameters using data, and in this case our estimate
forms a sequence of random variables (as we collect more data). We would like to reason
about the limiting behaviour of our estimates (do they “converge” to the truth, what is their
distribution around the truth and so on). This is what we refer to as large sample theory.

Suppose we have a sequence of random variables X1, . . . , Xn, and another random variable
X. Let Fn denote the CDF of Xn, and let F be the CDF of X.

The two most basic forms of stochastic convergence are:

1. Convergence in Probability: We say the sequence converges to X if for every ε > 0,

P(|Xn −X| ≥ ε)→ 0,

as n→∞. An important example is the weak law.

2. Convergence in Distribution: The sequence converges in distribution to X if

lim
n→∞

Fn(t) = F (t),

at all points t where F is continuous. An important example of this type of convergence
is the central limit theorem. We will see this in much more detail but roughly the central
limit theorem says that the average of i.i.d. RVs, rescaled appropriately converges in
distribution to a standard normal distribution, i.e. that

√
n(µ̂− µ)

σ
→ N(0, 1).

If you think about it, this is a really stunning result. You do not assume anything
about the RVs except their first two moments need to exist, and you conclude that the
average approaches a Gaussian distribution.


