
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 5: September 9
Lecturer: Siva Balakrishnan

5.1 Review and Outline

Last class we saw:

• Variances, particularly variance of sum of independent RVs.

• Conditional expectations.

• Moment generating functions.

This class will be entirely about the concentration of measure phenomenon and concentration
inequalities. Particularly, we will begin with some motivation and we will have a high-level
discussion to build some intuition, and then we will focus on proving Markov’s inequality,
Chebyshev’s inequality, Hoeffding’s inequality and Mill’s inequality. This material is from
Chapter 4 of Wasserman.

5.2 Motivation and Intuition

We saw in the last class that averages of many independent random variables tend to have
much smaller variance than the individual random variables. In some sense this is comforting,
but what we’d really like are quantitative bounds.

Particularly, we could always get unlucky and have the mean of a bunch of random variables
be quite far from their expectation. We want to be able to say concretely that most of the
time the average of many independent random variables is very close to their expectation.

This comment will be clearer when we cover the Central Limit Theorem: in a sense concen-
tration inequalities are non-asymptotic forms of the CLT. All this means is that the CLT
is something that holds when the number of random variables we are averaging n → ∞.
Concentration inequalities, give us less precise control over the average, but are valid even
for not very large n.
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5.2.1 A simple case study

Suppose I toss a fair coin n times, and denote the outcome of the ith toss Xi where Xi = −1
if tails and Xi = +1 if heads.

Our interest is in studying the random variable:

Y =
1

n

n∑
i=1

Xi.

In statistics we would call this the sample mean.

First, let us compute some things:

1. The mean:

E[Y ] =
1

n

n∑
i=1

EXi = 0.

In statistics we would this the population mean.

2. The variance:

Var(Y ) = E[Y 2] =
1

n2

n∑
i=1

Var(Xi) =
1

n
.

3. The worst case: So what if we got unlucky and every coin toss landed heads. Can
this even happen? How often will this happen?

In this case we would have that,

Y =
1

n

n∑
i=1

Xi = 1.

4. The best case: We might get really lucky and have exactly n/2 heads and n/2 tails
(assuming n is even).

In this case we would have that,

Y =
1

n

n∑
i=1

Xi = 0.

So to summarise, in the good case the sample mean of the random variables will coincide
exactly with the population mean, and in the worst-case it can be quite far from it. What
we would really like to understand is the typical case. In this lecture, we will build the tools
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to show that in this example (as well as many others) most of the time the sample mean is
within c/

√
n from the mean, for some small constant c.

This is called the concentration of measure phenomenon. It is trying to quantify our intuition
that it is very unlikely that independent random variables will conspire against us to cause
the sample mean to be very far from the population mean.

5.3 Markov’s Inequality

Our first inequality will not really help us with our case study problem but will help us prove
more useful inequalities.

Markov’s inequality: Suppose X is a non-negative random variable and that E[X] exists.
Then for any t ≥ 0:

P(X > t) ≤ E[X]

t
.

A slightly different way of writing this is that:

P(X > t(E[X])) ≤ 1

t
.

In words: a positive random variable is unlikely to be much larger than its mean.

Proof: Since X > 0,

E[X] =

∫ ∞

0

xfX(x)dx =

∫ t

0

xfX(x)dx+

∫ ∞

t

xfX(x)dx

≥
∫ ∞

t

xfX(x)dx ≥ t

∫ ∞

t

fX(x)dx = t P(X ≥ t).

Unfortunately for us the random variable Y from the previous section is not a positive
random variable. So we need to derive some more general inequalities.

5.4 Chebyshev’s Inequality

Chebyshev’s inequality is a simple consequence of Markov’s inequality but one that will
already lead us to some very useful conclusions.

For compactness, let us denote E[X] := µX and Var(X) := σ2
X . We will assume that both

exist.
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Chebyshev’s inequality: For any k ≥ 0:

P(|X − µX | > kσX) ≤ 1

k2
.

In words: The deviation from the mean of any random variable is on the order of the standard
deviation (hence the name), and more concretely the probability that a random variable is
more than k standard deviations away from its mean is at most 1/k2.

An application: Before we prove Chebyshev’s inequality lets apply it to the case study
problem. Recall, that we had in that example for the average Y :

µY = 0 and σY =
1√
n
,

so that by Chebyshev’s inequality we have that:

P
(
|Y | > k√

n

)
≤ 1

k2
.

This is precisely the type of quantitative bound we were hoping for. The average of n
independent random variables is typically roughly 1/

√
n distance from its expectation.

Proof: To prove this inequality we are just going to use Markov’s inequality, i.e.

P(|X − µX | ≥ kσX) = P((X − µX)2 ≥ k2σ2
X)

≤ E(X − µX)2

k2σ2
X

=
1

k2
.

As a quick note, Markov’s inequality only applied to positive random variables but only
needed that the random variable have a finite mean, Chebyshev’s inequality requires a finite
mean and a finite variance. More generally, if we can bound higher moments (or the MGF)
of a random variable we can get even tighter inequalities.

There are two aspects to Chebyshev’s inequality that are worth noting: one of them is
the typical deviation which is on the order of σX and the probability 1

k2
. In general, by

assuming more things we can improve the probability part but the deviation term will
always be on the order of σX . For instance, you might here the terminology exponential
concentration inequalities: these will use more refined techniques to improve the probability
to be something like exp(−k2).

5.5 Exponential Concentration Inequalities

5.5.1 Mill’s inequality

Let us first consider the case when each of our random variables X1, . . . , Xn ∼ N(µ, σ2), i.e.
they are normally distributed.
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An important property of Gaussians is that linear combinations of Gaussians are also Gaus-
sian distributed so the sample mean:

Y =
1

n

n∑
i=1

Xi

is also normally distributed. Particularly, Y ∼ N(µ, σ2/n).

Exercise: Prove the above fact. The standard way is to use moment generating functions.
Particularly, the moment generating function of any Xi is given by

MX(t) = exp(µt+ σ2t2/2).

Use this and independence to prove the required result.

Mill’s inequality is an inequality about standard normals, i.e. N(0, 1) random variables.
We can use this and some basic properties about Gaussians to get inequalities for general
Gaussian random variables.

Mill’s inequality: Let Z ∼ N(0, 1) then:

P(|Z| > t) ≤
√

2

π

exp(−t2/2)

t
.

Once again notice that the deviation is on the order of the standard deviation but the
probability is exponential. This is much sharper than what we would get from Chebyshev’s
inequality. How do we use this for the average we are interested in?

First observe that if Y ∼ N(µ, σ2/n) then

Z :=
Y − µ
σ/
√
n
,

has N(0, 1) distribution. We can apply Mill’s inequality to Z and do some simple algebra.

This gives us that:

P
(
|Y | > tσ√

n

)
≤
√

2

π

exp(−t2/2)

t
.

To compare, applying Chebyshev’s inequality would give us:

P
(
|Y | > tσ√

n

)
≤ 1

t2
,

which is much weaker for large values of t.
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Proof: First we need the standard Gaussian density:

fZ(x) =
1√
2π

exp

(
−x

2

2

)
.

So that,

P(|Z| > t) =
2√
2π

∫ ∞

t

exp

(
−x

2

2

)
dx

=

√
2

π

1

t

∫ ∞

t

t exp

(
−x

2

2

)
dx

≤
√

2

π

1

t

∫ ∞

t

x exp

(
−x

2

2

)
dx

=

√
2

π

1

t

∫ ∞

t2/2

exp(−u)du,

by taking u = x2/2. Integrating gives:

P(|Z| > t) ≤
√

2

π

exp(−t2/2)

t
,

as desired.

5.5.2 Hoeffding’s inequality

The main drawback is that Mill’s inequality only applies to Gaussian random variables.
Another commonly useful exponential concentration applies to bounded random variables.
This is called Hoeffding’s inequality.

Hoeffding’s inequality: Suppose that X1, . . . , Xn are independent and that, ai ≤ Xi ≤ bi,
and E[Xi] = 0. Then for any t > 0,

P

(
1

n

n∑
i=1

Xi ≥ t

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

We will not prove this one, but Wasserman’s book has a proof if you are curious.

Hoeffding’s inequality looks a bit different from the other inequalities we have seen today,
but let us rearrange it a bit. Equivalently,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

√∑n
i=1(bi − ai)2

n2

)
≤ 2 exp

(
−2t2

)
.
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This is more like the earlier inequalities, but notice that we don’t really have the standard
deviation any more. This is really because if ai ≤ Xi ≤ bi then Var(Xi) ≤ (bi − ai)2.

Exercise: Prove the above fact.

So that:

Var

(
1

n

n∑
i=1

Xi

)
≤
∑n

i=1(bi − ai)2

n2
,

and this will allow us to interpret Hoeffding’s inequality in a more familiar way. Roughly, it
says that the probability that the sample average is more than t standard deviations from
its expectation is at most exp(−2t2).

Let us now use Hoeffding’s inequality in our case study example of coin tosses. There each
random variable is between −1 and 1 so we have that by Hoeffding’s inequality:

P
(
|Y | ≥ 2t√

n

)
≤ 2 exp(−2t2).

Observe once again this inequality is similar to Chebyshev’s inequality on the left hand side,
i.e. the deviation is on the order of 1/

√
n but the right hand side is much smaller exp(−t2)

instead of 1/t2.


