
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 32: November 28
Lecturer: Siva Balakrishnan

32.1 Review and Outline

In the last class we discussed directed graphical models.

1. Conditioning on colliders

2. d-separation

In this lecture we will discuss classification. This is Chapter 22 of the Wasserman book.

In our past lectures we have focused on regression (linear and non-parametric), and density
estimation (parametric and non-parametric). A closely related task to regression is that of
classification. Formally, we observe i.i.d. data (X1, Y1), . . . , (Xn, Yn) where Xi ∈ Rd and
Yi ∈ {1, . . . , k}, i.e. there are k classes.

A classifier or a classification rule is simply a map h : Rd 7→ {1, . . . , k}, i.e. when we observe
a new X we predict its category/class to be h(X).

32.2 Error rates and binary classification

Broadly, the goal in classification is to find classification rules that are accurate. The true
(population) error rate of a classifier h is:

L(h) = P(h(X) 6= Y ),

and the empirical error rate is:

L̂(h) =
1

n

n∑
i=1

I(h(Xi) 6= Yi).

A special case of classification is when we have binary outcomes, i.e. Y ∈ {0, 1}. Let

r(x) = E[Y |X = x] = P(Y = 1|X = x),
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be the usual regression function. We can re-write this using Bayes’ rule:

r(x) =
f(x|Y = 1)P (Y = 1)

f(x|Y = 1)P (Y = 1) + f(x|Y = 0)P (Y = 0)
.

We often denote P (Y = 1) = π and then we have P (Y = 0) = 1− π.

The optimal classifier is known as the Bayes’ classifier. It is given by:

h∗(x) =

{
1 if r(x) > 1

2

0 otherwise.

For a classifier, we can define its decision boundary. It is generally defined as a surface that
partitions the domain of X into two sets, one for each class.

The Bayes classifier has a decision boundary given by:

D(h∗) = {x : P (Y = 1|X = x) = P (Y = 0|X = x)}.

There are two other equivalent forms of the Bayes’ classifier:

1.

h∗(x) =

{
1 if πf(x|Y = 1) > (1− π)f(x|Y = 0)

0 otherwise.

2.

h∗(x) =

{
1 if P (Y = 1|X = x) > P (Y = 0|X = x)

0 otherwise.

Finally, to re-visit the optimality of the Bayes rule: it is the case that for any other classifi-
cation rule h, we have that:

L(h∗) ≤ L(h),

so the Bayes classifier minimizes the true error rate amongst all classifiers.

The main issue however is that the Bayes classifier depends on unknown quantities, i.e. the
probabilities P (Y = 1|X = x) or the densities f(x|Y = 1) and so on. However, it does serve
as a template to develop classifiers. Many classifiers explicitly try to approximate the Bayes
rule using the training data.

Broadly, there are different strategies for classification:
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1. Empirical Risk Minimization: Here the idea is simple, we choose a set of classifiers
H and try to find h ∈ H that minimizes some estimate of L(h). Usually we use the

empirical risk L̂(h).

2. Regression: We estimate the regression function or P (Y = 1|X = x) and then define
the classfier:

h(x) =

{
1 if P̂ (Y = 1|X = x) > 1/2

0 otherwise.

3. Density Estimation: We estimate π, f(x|Y = 0) and f(x|Y = 1) using the training
data, and then use the classifier:

h∗(x) =

{
1 if π̂f̂(x|Y = 1) > (1− π̂)f̂(x|Y = 0)

0 otherwise.

We will consider some of these ideas today and then continue in the next lecture.

32.3 Linear Discriminant Analysis

Our first classifier to consider, will be based on density estimation. First, let us hypothesize
that:

f(x|Y = 0) ∼ N(µ0,Σ)

f(x|Y = 1) ∼ N(µ1,Σ)

P (Y = 1) = π1.

In this simplified setting we can derive the form of the Bayes classifier. In particular, h∗(x) =
1 if:

π1
1

(2π)d/2|Σ|1/2
exp

(
−(x− µ1)

TΣ−1(x− µ1)

2

)
> (1− π1)

1

(2π)d/2|Σ|1/2
exp

(
−(x− µ0)

TΣ−1(x− µ0)

2

)
,

rearranging this we obtain that h∗(x) = 1 if,

log(π1/(1− π1))−
(x− µ1)

TΣ−1(x− µ1)

2
> −(x− µ0)

TΣ−1(x− µ0)

2
.

We note that the decision boundary of this classifier is:

log(π1/(1− π1))−
(x− µ1)

TΣ−1(x− µ1)

2
= −(x− µ0)

TΣ−1(x− µ0)

2
,
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which on re-arrangement gives:

log(π1/(1− π1))−
µT
1 Σ−1µ1 + µT

0 Σ−1µ0

2
+ xTΣ−1(µ1 − µ0) = 0,

which shows that the decision boundary of the classifier is linear, i.e. of the form α0+α
Tx = 0,

for some values α0 and α. This is why the classifier is called linear discriminant analysis.

We could have also, considered a setting where:

f(x|Y = 0) ∼ N(µ0,Σ0)

f(x|Y = 1) ∼ N(µ1,Σ1)

P (Y = 1) = π1.

Under this setting the Bayes classifier will be a quadratic function of x and this is known as
Quadratic Discriminant Analysis.

Going back to LDA, now that we have a form for the Bayes classifier, we can approximate
the Bayes rule by estimating the various unknown quantities. Concretely, given a training
data set {(X1, Y1), . . . , (Xn, Yn)} we can estimate:

π̂1 =
1

n

n∑
i=1

I(Yi = 1)

µ̂0 =
1∑n

i=1 I(Yi = 0)

n∑
i=1

XiI(Yi = 0)

µ̂1 =
1∑n

i=1 I(Yi = 1)

n∑
i=1

XiI(Yi = 1).

These are the maximum likelihood estimators for these parameters. The MLE for Σ is given
by:

Σ̂0 =
1∑n

i=1 I(Yi = 0)

n∑
i=1

(Xi − µ̂0)(Xi − µ̂0)
T I(Yi = 0)

Σ̂1 =
1∑n

i=1 I(Yi = 1)

n∑
i=1

(Xi − µ̂1)(Xi − µ̂1)
T I(Yi = 1)

Σ̂ =

∑n
i=1 I(Yi = 0)Σ̂0 +

∑n
i=1 I(Yi = 1)Σ̂1

n
.

With these estimates in place we just use the rule h(x) = 1 if:

log(π̂1/(1− π̂1))−
µ̂T
1 Σ̂−1µ̂1 + µ̂T

0 Σ̂−1µ̂0

2
+ xT Σ̂−1(µ̂1 − µ̂0) > 0,
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32.4 Logistic Regression

A popular direct regression based classifier is a logistic regressor. Here the hypothesis is
that:

P (Y = 1|X = x) =
exp(β0 + βTx)

1 + exp(β0 + βTx)
.

This is a logistic function of β0 + βTx and has the property that it is always between [0, 1]
and so represents a true probability. Notice the following properties, P (Y = 1|X = x)→ 1
if β0 + βTx → ∞, P (Y = 1|X = x) → 0 if β0 + βTx → −∞ and P (Y = 1|X = x) = 1/2 if
β0 + βTx = 0

Under the logistic hypothesis we can again derive the Bayes rule, h∗(x) is 1 if:

exp(β0 + βTx)

1 + exp(β0 + βTx)
>

1

1 + exp(β0 + βTx)
,

which on rearrangement gives:

β0 + βTx > 0.

The decision boundary for the Bayes classifier is then simply:

β0 + βTx = 0,

which is again a linear decision boundary. So both LDA and logistic regression are linear
classifiers. In our next class, we will discuss how to fit a logistic regression, i.e. estimate β0
and β1, and then compare logistic regression to LDA.


