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Lecturer: Siva Balakrishnan

31.1 Review and Outline

In the last class we started discussing directed graphical models:

1. Parameter counting and independence

2. Factorization

3. Local Markov property

Today, we will first re-visit some things that were wrong in the previous lecture and then
discuss d-separation.

31.2 Marginal independence

The first thing we need to fix from last lecture is the rule for marginal dependence.

We first need to define an “unblocked path”. An unblocked path is one that can be traced
without traversing a pair of arrows that collide “head-to-head”.

Now, the rule for marginal dependence is simple: two random variables are marginally
independent if there is no unblocked path between them.

Going back to the graph from last class:

We can now verify that the only marginal independence is that F⊥⊥A, as there are unblocked
paths between every other pair of variables.
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31.3 Conditioning on colliders

The other thing that I did not really give a clean example of was the phenomenon that
conditioning on a collider makes RVs dependent.

1. Example 1: A simple example is the following. Suppose that (like in Pittsburgh),
being sunny and being warm are independent, i.e. knowing that it is sunny does not
mean it is more likely to be warm for instance.

Suppose I now denote the random variable X which is 1 if it is not sunny, and Y which
is 1 if it is cold. Now, I can define a common effect Z which is 1 if it snows, which in
turn happens whenever it is cold and not sunny, i.e. Z = X and Y .

X and Y are marginally independent. Now, lets see what happens if I condition on
Z = 0, then knowing that X = 1 for instance tells us that Y = 0, i.e. we can verify
that:

P (Y = 0|X = 1, Z = 0) = 1 6= P (Y = 0|Z = 0) = 2/3.

So we can conclude that X ⊥6⊥ Y |Z.

2. Explaining away: Explaining away is the phenomenon that if an effect has two
independent causes, then conditioning on the effect makes the causes dependent. Ad-
ditionally, it can make these causes negatively associated, i.e. knowing that one of the
causes happens can make it less likely that the other cause also happened.

Again lets see a simple example: This is an abstract version of the example we con-
sidered last time. Roughly, Z is whether the grass is wet, X is whether a fire engine
came by and Y is whether it rained. The common effect Z = X or Y , and again the
causes X and Y are independently, Ber(1/2).

In this case, we have:

X Y Z P(X,Y,Z)
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 1 1/4

Now, it is easy to verify that:

P (X = 1|Y = 1, Z = 1) = 1/4 < P (X = 1|Z = 1) = 2/3.

In words, knowing that one of the causes (Y ) is true makes it less likely that the other
cause is true, i.e. one cause explains away the effect. So if we know that the grass is
wet and that it just rained we would be less inclined to think that a fire truck also
came by.
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31.4 d-separation

In the last class we discussed the basic conditional independence properties that are implied
by the graph structure. These are given by the local Markov property which gives us that:

X ⊥⊥ {non-descendants of X}| parents of X.

However, it turns out that there are many other independence conditions one can derive
from this basic set.

Let X and Y be distinct vertices and let W be a set of vertices not containing X or Y . Then
X and Y are d-separated given W if there exists no undirected path between X and Y such
that

1. every collider on the path has a descendant in W, and

2. no other vertex on the path is in W.

The intuition is simple: if you have a regular path then conditioning breaks the path, if
you have colliders then conditioning opens the path. Furthermore, if you condition on a
descendant of a collider you open the path. Now, if there are no open paths then the
conditional independence relationship holds.

The following example illustrates this: consider the following graph:

The following statements follow from the d-separation rules:

1. X and Y are d-separated (given the empty set);

2. X and Y are d-connected given {S1, S2};

3. X and Y are d-separated given {S1, S2, V }.

Lets look at another example:

Which of the following are correct?
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1. A⊥⊥B

2. E ⊥⊥ F |K

3. E ⊥⊥ F |K, I

And one more:

In this Bayes net, when are A and H independent?
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31.5 Directed graphs: advanced topics

So far, what we have seen is that directed graphical models can be a useful way to compactly
represent a joint probability distribution, and in particular the graph implies a certain fac-
torization of the joint distribution. Furthermore, it can be used to graphically determine
various independence and conditional independences that are much less obvious to determine
from the joint distribution directly.

A graphical model (say the RVs are all discrete) is completely specified by the conditional
probabilities P (X|parents(X)).

There are many questions that of a more statistical nature that we will not have time to
cover in this class:

1. Inference: Given a fully specified directed graphical model, answer questions of the
form: “What is the probability that X = 1|Y = 0, Z = 1?”

Inference in a graphical model is basically asking conditional/marginal probability
queries.

Answering these questions uses the graphical model structure in an intricate way, and
the class of algorithms are known as message-passing algorithms.

2. Estimation: Estimation is the question: given data X1, . . . , Xn, where each Xi ∈ Rd

and a graph G, estimate the conditional probabilities P (X|parents(X)).

3. Graph-structure estimation: In a lot of applications, we are just given a collection
of data, and we want to estimate the structure of the data that underlies the RVs that
we measure.

The brute force way, tests every possible conditional independence assumption, and
then creates the graph that respects the valid conditional independence assumptions.
This is both computationally and statistically impossible to do for large graphs, so
more often many different heuristics are used to determine conditional independence
relationships, and the graph structure.


