
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 30: November 16
Lecturer: Siva Balakrishnan

30.1 Review and Outline

In the last class we discussed causal inference:

1. The population average treatment effect and Neyman’s null

2. Testing Neyman’s null by estimating the variance of the population average treatment
effect estimator

3. Causal inference in observational studies and selection bias

4. Correcting for selection bias by correcting for confounders

Today we will discuss directed graphical models. This is Chapter 17 of the Wasserman book.

Broadly, graphical models are a concise, graphical way of representing structured probability
distributions. They are widely used in a variety of applications in machine learning and
statistics, and there are entire courses devoted to the topic.

Our modest goal is to use a couple of lectures to get a sense for what the semantics of
graphical models are and what are the main statistical questions of interest.

30.2 Parameter counting

Suppose we have a collection of d random variables: X1, . . . , Xd, each of which takes values
in {1, . . . , k}, and suppose we want to understand their joint distribution, i.e. I want to
represent P (X1 = i1, . . . , Xd = id) for all possible values. How many parameters do I need?

The answer is kd − 1. This is a gigantic number even for moderate sizes of k and d and this
can be quite problematic.

Now, suppose I tell you that all the random variables are independent? You can then see
that d(k − 1) parameters suffice to represent the entire distribution.

This is the basic idea behind graphical models: I want to represent the joint probability dis-
tribution over many random variables, but I want to do so compactly by explicitly modeling
the dependence structure between the random variables.
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Lets see a slightly more interesting example: suppose that I have a system with three vari-
ables: “SAT score (S)”, “High-School Grade (H)”, “Intelligence (I)”. Lets suppose these are
binary variables.

A natural idea would be that both S and H are determined by I, and are conditionally
independent given I. In this case, we can see that the joint probability:

P (S,H, I) = P (I)P (S|I)P (H|S, I)

= P (I)P (S|I)P (H|I),

using the conditional independence. Now, again we can count the number of parameters
needed to represent the distribution: it is 1 + 2 + 2 = 5. With no independence assumptions
we would need 7 parameters, while with full independence we would need only 3 parameters.

Here is another example of a simple Bayes net:

A Bayes net (or a directed graphical model) is a directed acyclic graph on a collection of
random variables. It is a graphical way of representing a distribution that factorizes as:

P (X1, . . . , Xd) =
d∏

i=1

P (Xi|Pa(Xi)),

so in the above example, we are claiming that the joint distribution factorizes as:

P (F, S,H,N,A) = P (F )P (A)P (S|F,A)P (H|S)P (N |S).

Again supposing everything is binary we can count the number of parameters as: 1 + 1 +
4 + 2 + 2 = 10 which is much less than the full 31 parameters. Just intuitively, the fact that
there is a concise representation must mean that the distribution has many independence
assumptions encoded in it.
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30.3 Independencies

The most interesting fact about directed graphical models is that we can “read off” all the
independence assumptions, and conditional independence assumptions.

Lets start off with independence assumptions.

In the flu example I claim that F and A are independent. Lets see how one might verify my
claim:

P (F,A) =
∑
H,S,N

P (F, S,H,N,A) = P (F )P (A)
∑
H,S,N

P (S|F,A)P (H|S)P (N |S)

= P (F )P (A)
∑
S

[
P (S|F,A)

[∑
H

P (H|S)

][∑
N

P (N |S)

]]
= P (F )P (A),

so we can see that F ⊥⊥A. There are actually no other marginal independencies implied by
the graph. Lets try another pair: suppose we tried F and S:

P (F, S) =
∑

H,N,A

P (F, S,H,N,A) = P (F )
∑

H,N,A

P (A)P (S|F,A)P (H|S)P (N |S)

= P (F )

[∑
H,N

[∑
A

P (S,A|F )

]
P (H|S)P (N |S)

]

= P (F )P (S|F )

[∑
H,N

P (H|S)P (N |S)

]
= P (F )P (S|F ),

which does not tell us that they are independent.

The general rule is that in a graphical model, two variables are marginally independent if
there is no directed path between them.

So we can see that F ⊥⊥ A is the only marginal independence in our example. However,
intuitively it seems like there are several other independence assumptions being encoded by
the graph, since we have many fewer parameters than we would have if we added extra edges
between {F,A} and {H,N}.

The remaining independencies are actually conditional independencies. The graphical rule
is: “variables are independent of their non-descendents conditioned on their parents”. This
is often called the local Markov property.

This graphical rule is equivalent to the factorization property. Lets verify one direction, i.e.
that the local Markov property =⇒ the factorization property, for the flu example.

We know by the chain rule:

P (F,A, S,H,N) = P (F )P (A|F )P (S|F,A)P (H|S, F,A)P (N |H,S, F,A).
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Now you can apply the above rule to each of the terms and see that:

P (F,A, S,H,N) = P (F )P (A)P (S|F,A)P (H|S)P (N |S),

which is just the factorization property.


