
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 3: September 2
Lecturer: Siva Balakrishnan

3.1 Review and Outline

Last class we saw:

• Random variables

• The distribution function, i.e., P(X ≤ x)

• The probability mass/density functions.

My notes will mainly follow the Wasserman book and cover the following topics: transforma-
tions of random variables (Section 2.11), expectation (3.1), properties of expectation (3.2),
variance and co-variance (3.3). These are covered in Chapter 2 of Casella and Berger.

3.2 A couple of quick notes

We defined the pdf for a continuous random variable as the function that satisfies:

FX(x) =

∫ x

−∞
fX(u)du.

A consequence of this definition and the fundamental theorem of calculus is that we can
always calculate the pdf from the CDF as:

fX(x) = F ′X(x).

This is sometimes used as the definition of the density function.

Finally, we often use the symbol ∼ to denote “distributed as”, i.e. X ∼ Ber(p) means that
the random variable X has a Bernoulli distribution with parameter p.

3.3 Transformations of Random Variables

The basic question here is: suppose I have a random variable X with pdf/pmf fX and CDF
FX , and I consider Y = r(X), for some function r. For instance, r(X) might be something
like X2 or exp(X). How do I compute the pdf/pmf or CDF of Y ?
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3.3.1 The discrete case

In the discrete case Y is also a discrete random variable and its pmf is given by:

P(Y = y) = P(r(X) = y)

= P({x : r(x) = y}) = P(X ∈ r−1(y)).

This somewhat opaque formula is perhaps clarified via an example: suppose X ∈ {−1, 0, 1},
with probabilities 1/4, 1/2 and 1/4, and consider the random variable Y = X2.

The way to proceed is to compute the different values that Y can take and then adding
up the necessary probabilities. In this case Y can take the values {0, 1} and does so with
probability 1/2 each.

3.3.2 The continuous case

This is substantially more involved. I will sketch the basic ideas here.

There is one case when things simplify: suppose that the transformation r is invertible, and
we have s = r−1 then we have the formula:

fY (y) = fX(s(y))

∣∣∣∣ds(y)

dy

∣∣∣∣ .
As a basic example, suppose we consider X = U [0, 1] and Y = X2. Before we apply the
formula, we should try to guess what we think the pdf of Y would be. Squaring a number
between [0, 1] only makes it smaller, so we should expect that the density of Y would be
peaked near 0, i.e., the uniform density will get “squeezed” towards 0.

Now, we can apply the formula. Observe that r(X) = X2, and since X ≥ 0, s(Y ) =
√
Y , so

we have that:

fY (y) =
1

2
√
y
.

Graphing this density will show that it matches our intuition. Notice again, a density is not
a probability! This density →∞ near 0.

The book also describes a method to compute the density of transforms which are not
invertible. We will cover this if necessary later on.

Some intuition for the formula: In general, dealing with densities takes some getting
used to. Roughly, for a continuous random variable one should think of multiplying the
density by the length of a small interval to approximate the probability of the random
variable falling in this interval.
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When you transform the random variable then the transformation affects both the value of

the density and also the length of the interval. The term
∣∣∣ds(y)dy

∣∣∣ , is called the Jacobian of the

transformation and accounts for the stretching of the interval caused by the transformation.

Here is a very rough mathematical calculation. For a very small ∆:

P(Y ∈ [y0 −∆, y0 + ∆]) ≈ fY (y0)2∆.

If Y falls in the interval this is the same as saying that X falls in a slightly different interval,
i.e.,

P(Y ∈ [y0 −∆, y0 + ∆]) = P(X ∈ [s(y0 −∆), s(y0 + ∆)])

≈ P
(
X ∈ [s(y0)−∆

ds(y0)

dy
, s(y0) + ∆

ds(y0)

dy
]

)
≈ fX(s(y0))2∆

∣∣∣∣ds(y0)dy

∣∣∣∣ ,
where in the second line we assumed the derivative was positive (otherwise we would flip the
end points of the interval). Equating these gives the result.

3.4 Expectation

A common goal is to understand or summarize the behaviour of a random variable. One way
to do this is by trying to understand some type of “typical behaviour” of a random variable.
The expectation, or mean, or average, or first moment of a random variable is defined as:

E[X] =

∫
xdFX(x) =

∫
xfX(x)dx or

∑
x

xfX(x).

In general, we say that the expectation does not exist if E|X| =∞.

One way to think of the expectation of a random variable is by supposing you could repeat
the underlying experiment many times in order to obtain new copies of the random variable
X1, . . . , Xn. In this case, the expectation E(X) ≈ 1

n

∑n
i=1Xi. This is called the law of large

numbers and we will re-visit this in a few lectures.

Some examples:

1. Suppose X ∼ Ber(p) then,

E[X] = p ∗ 1 + (1− p) ∗ 0 = p.
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2. Suppose that X ∼ U [−2, 4], then

E[X] =

∫ 4

−2

x

6
dx =

1

12
(16− 4) = 1.

3. The most famous example of a distribution whose mean doesn’t exist is a Cauchy
distribution. It has density fX(x) = 1

π(1+x2)
for x ∈ (−∞,∞).

E|X| =
∫ ∞
−∞

|x|
π(1 + x2

dx =
2

π

∫ ∞
0

x

1 + x2
dx.

You can check that the anti-derivative of x
1+x2

is log(1+x2)
2

. So the integral above is:

E|X| = 1

π
lim
M→∞

log(1 +M2) =∞.

3.5 Properties of Expectations

3.5.1 Expectation of transformation

For a random variable Y = r(X) the expectation is given by

E[Y ] = E[r(X)] =

∫
x

r(x)dFX(x).

This is often called the rule of the lazy statistician.

A very important special case of this is when Y = IA(X), i.e, Y = 1 if X ∈ A and 0
otherwise. This is called an indicator random variable. Then we have:

E[Y ] = E[IA(X)] =

∫
x

IA(x)dFX(x) =

∫
x∈A

fX(x)dx = P(X ∈ A).

3.5.2 Linearity of expectations

One of the most commonly used properties of expectations is that they are linear, i.e., if you
have a collection of RVs X1, . . . , Xn and some constants a1, . . . , an, then

E[
∑
i

aiXi] =
∑
i

aiE[Xi].
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There are many nice applications of this fact, but a basic one is that we can now calculate
the mean of binomial (the C&B book does this directly), but we can use the fact that a
Bin(n, p) random variable is just a sum of n independent Bernoulli’s.

So, if X ∼ Bin(n, p) and Yi ∼ Ber(p) then:

E[X] =
n∑
i=1

E[Yi] = np.

3.5.3 Moments and Central Moments

For a random variable X we define its kth moment to be:

µk := E[Xk].

Usually we denote the expectation as µ instead of µ1. The central moments are then defined
as:

αk := E[(X − µ)k].

3.6 Bivariate Distributions and Independence of Ran-

dom Variables

3.6.1 Bivariate Distributions

Suppose we have a pair of discrete random variables X, Y then we can define their joint
pmf by:

fXY (x, y) = P(X = x and Y = y).

In the continuous case the joint density function is the one that integrates to give us proba-
bilities, i.e., it is the non-negative function that for any set A ⊂ R×R satisfies the property
that: ∫

(x,y)∈A
fXY (x, y) dx dy = P((X, Y ) ∈ A).

An example: Suppose (X, Y ) are jointly uniform over the unit square. Then it has
density:

fXY (x, y) = 1,



3-6 Lecture 3: September 2

if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Use this to calculate the probability P(X ≤ 1/4, Y ≤ 1/2). To
do this we integrate the joint density:

P(X ≤ 1/4, Y ≤ 1/2) =

∫ 1/4

0

∫ 1/2

0

1 dx dy =
1

8
.

3.6.2 Independence

Formally, X and Y are independent if for every pair of sets A,B we have that:

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

In words, we say that two random variables are independent if their joint probability is equal
to the product of their marginal probabilities. This seems to suggest that we need to check
this condition for every possible pair of sets A and B. It turns out that we can instead check
that the joint pmf/pdf factorizes, i.e., that

fXY (x, y) = fX(x)fY (y),

for all (x, y). Equivalently, if you can write the joint probability of two random variables as
the product of a function of just the first one, and just the second one then the two random
variables are independent, i.e., if

fXY (x, y) = h(x)g(y),

for some pair of functions h, g then the two random variables are independent.

Example: Suppose X and Y have density:

fXY (x, y) = 2 exp(−(x+ 2y)),

for x ≥ 0, y ≥ 0. Are X and Y independent?

We see that we can write their joint density as:

fXY (x, y) = 2 exp(−(x+ 2y)) = 2 exp(−x) exp(−2y) = h(x)g(y),

so we can conclude that these random variables are independent.

An important fact about independent random variables X and Y , is that for any functions
f and g,

E(f(X)g(Y )) = E(f(X))E(g(Y )).

More generally, we can define joint independence for a set of RVs X1, . . . , Xn by requiring
that their joint factorizes as:

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) . . .P(Xn = xn).

For jointly independent random variables:

E(g1(X1)g2(X2) . . . gk(Xk)) = E(g1(X1)) . . .E(gk(Xk)).
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3.7 Variance and Covariance

The second central moment of a random variable is called its variance. The variance of a
distribution measures its spread – roughly how far it is on average from its mean. We use
σ2
X to denote the variance of X. Its square root, i.e., σX is the standard deviation.

A basic fact is that:

σ2
X = E(X − µ)2 = E[X2 + µ2 − 2µX] = E(X2)− µ2.

For constants a, b, we have

σ2
aX+b = a2σ2

X .

For two random variables X, Y we define their covariance as:

Cov(X, Y ) = E((X − µX)(Y − µY )).

The covariance is a measure of association. We can re-write it as:

Cov(X, Y ) = E(XY )− E(X)E(Y ).

One can also think of it as a measure of a type of (linear) deviation from independence. For
independent random variables the covariance is 0. We often work with a standardized form
of the covariance, known as the correlation:

Cor(X, Y ) =
Cov(X, Y )

σXσY
.

We will prove this either in an assignment or during a later lecture but the correlation is
always between −1 and 1, i.e.,

−1 ≤ Cor(X, Y ) ≤ 1.

The covariance of a random variable and itself is just its variance. In general, for a collection
of random variables:

Variance

(
n∑
i=1

aiXi

)
=

n∑
i=1

n∑
j=1

aiajCov(Xi, Xj).

Exercise: Prove the above fact. You can use the following result: for a set of numbers
x1, . . . , xn, (

n∑
i=1

xi

)2

=
n∑
i=1

n∑
j=1

xixj.
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3.7.1 Variance of averages of independent random variables

We will cover this in much more detail when talking about inequalities so this is just a teaser.
Suppose I take the average of n independent and identically distributed random variables
X1, . . . , Xn and compute the variance of the average. We can use the above formula to see
that:

Variance

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Variance(Xi) =
σ2
X

n
.

There are two important points to notice:

1. The variance of the average is much smaller than the variance of the individual random
variables: this is one of the core principles of statistics and helps us estimate various
quantities reliably by making repeated measurements.

2. It is also worth trying to understand why we need independent measurements. The
extreme case of non-independence is when X1 = X2 = . . . = Xn, in this case we would
have that:

Variance

(
1

n

n∑
i=1

Xi

)
= σX .

There is no reduction of variance by taking repeated measurements if they strongly
influence each other.


