
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 27: November 4
Lecturer: Siva Balakrishnan

27.1 Review and Outline

In the last class we discussed hypothesis testing:

1. FDR and FDR control

2. Inverting hypothesis tests

Today we will discuss independence testing. This is Chapter 15 of the Wasserman book.

There are many applications of independence testing: in drug trials a natural question is
whether the outcome is independent of the treatment or not, in machine learning we often
want to do “feature selection” i.e. find features that are “associated” with a variable we want
to predict and so on. In all of these cases, we either want to test if two random variables are
independent or not, or to measure the strength of their dependence or association.

27.2 Testing Independence and Measuring Association

Given two random variables X and Y , it is often of interest to understand if the two random
variables are dependent, and to estimate the strength of their dependence.

Concretely, we would like to study the hypothesis testing question:

H0 : X ⊥⊥ Y
H1 : X ⊥6⊥ Y,

where we use the symbols ⊥⊥ and ⊥6⊥ to denote independent and not independent respectively.

Broadly, one of the key ideas is to use the fact that if X and Y are independent then their
joint distribution will be equal to the product of their marginals. We can use the “distance”
between the joint and product of marginals as a measure of association.
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27.3 Two binary variables

To begin with let us consider the simplest possible setting. Suppose that (X, Y ) are two
binary random variables and we observe n i.i.d pairs (X1, Y1), . . . , (Xn, Yn).

We can represent this binary data in a two-by-two table, i.e. a table of the form:

Y= 0 Y = 1
X = 0 C00 C01 C0·
X = 1 C10 C11 C1·

C·0 C·1

Here Cij denotes the number of times we observed the pair (i, j). This is a special case of
something known as a contingency table.

With all of this in place we can define our first test for independence. This is the Pearson
χ2 test. The test statistic is:

T =
1∑
i=0

1∑
j=0

(Cij − Eij)2

Eij
,

where we define the expected counts as

Eij =
Ci·C·j

n
.

In this case, under the null the statistic will have an asymptotic χ2
1 distribution, so we can

obtain a size α test by using the appropriate quantile of the χ2 distribution, i.e. we reject
the null hypothesis if:

T ≥ χ2
1,α.

27.3.1 Measuring Association of Two Binary Variables

We can think about the population version of the two-by-two table:

Y= 0 Y = 1
X = 0 p00 p01 p0·
X = 1 p10 p11 p1·

p·0 p·1
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Note that the counts C are simply a multinomial with the probabilities in the population
table. We can define the odds ratio:

ψ =
p00p11
p01p10

,

where the basic observation is that under independence ψ = 1. It is also common to use the
log-odds ratio γ := logψ which is 0 under independence.

In order to measure association between two binary RVs we could then estimate the log odds
ratio. The MLE for it is:

γ̂ = log

(
C00C11

C01C10

)
.

It is also easy to estimate the variance of γ̂ (see the Wasserman book).

27.4 Two discrete variables

The generalization from two binary variables to two discrete variables is straightforward.
Suppose that the two variables take values X ∈ {1, . . . , I}, and Y ∈ {1, . . . , J}. In this case
we again have an I × J contingency table.

Y= 0 . . . Y = J
X = 0 p00 . . . p0J p0·

...
X = I pI0 . . . pIJ pI·

p·0 . . . p·J

Again we would use the same χ2 statistic which is:

T =
I∑
i=0

J∑
j=0

(Cij − Eij)2

Eij
,

where

Eij =
Ci·C·j

n
,

as before. The general rule is that T will be asymptotically χ2 distributed with degrees of
freedom (I − 1)(J − 1), so we can use this distribution to determine the cutoff.
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27.5 Two continuous variables

The case of two continuous variables is dealt with somewhat briefly in the Wasserman book.
There are many important measures of association for two continuous RVs (some of the ones
we talk about are more general). Many of them do not lead to valid tests of independence,
but they are widely used in statistical practice.

27.5.1 Pearson’s correlation

We have seen this one before. A measure of association between two random variables is
their Pearson correlation:

ρX,Y =
cov(X, Y )

σXσY
.

It is straightforward to estimate the Pearson correlation. If X, Y have a joint normal distri-
bution then the Pearson correlation is zero if the RVs are independent so in this special case
it measures the dependence between two RVs.

In some sense, the Pearson correlation coefficient measures linear association between two
random variables. The way to interpret this statement is simply that the Pearson correlation
is 1 for two random variables that are related linearly (i.e. if Y = aX + b, and a > 0).

27.5.2 Spearman’s rho

Spearman’s rho is a version of Pearson’s that measures monotonic association between two
random variables, i.e. it is 1 if there is any monotonically increasing function that relates
the two random variables.

The idea is quite simple: we transform the data (X1, Y1), . . . , (Xn, Yn) to their ranks, i.e.
assume you sorted the Xs in increasing order (assume there are no ties, if there are we
usually average the ranks), and replaced each Xi with its rank rXi

and did the same for the
Y s.

Now you have data: (rX1 , rY1), . . . , (rXn , rYn). Spearman’s rho is then defined as the Pearson
correlation of this rank data.

Here is an example from Wikipedia:
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27.5.3 Mutual information

It turns out that the above two measures although widely applied do not in general give
valid tests for independence, i.e, they can be zero even when the RVs are dependent. They
do however give one-sided tests, i.e. if the true (not estimated) Spearman rho or the Pearson
correlation coefficient is non-zero then the RVs are dependent.

A different non-parametric measure of association that does lead to valid tests for indepen-
dence is the mutual information. Recall, our original intuition that dependence means that
the joint distribution is far from the product of the marginals. A natural idea is to use the
KL divergence to measure this distance. This is called the mutual information. We assume
the random variables have continuous densities, then we would compute:

I(X;Y ) = DKL(p(X, Y )||p(X)p(Y ))

=

∫
X

∫
Y

p(X, Y ) log

(
p(X, Y )

p(X)p(Y )

)
dXdY.

So in order to measure the strength of association we could estimate the MI via kernel density
estimation (say):

Î(X;Y ) =

∫
X

∫
Y

p̂h(X, Y ) log

(
p̂h(X, Y )

p̂h(X)p̂h(Y )

)
dXdY.

This is an example of a plugin estimator.

To perform a test for independence, we really need to understand the distribution of this
estimator. This turns out to be quite challenging so people often estimate the cut-offs using
an idea very similar to that of the permutation test.
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27.6 One discrete and one continuous distribution

It turns out that there is a simplification that can be used in the case when we are testing
for independence between a discrete X ∈ {1, . . . , I} and a continuous Y .

The idea is to notice that if we denote the conditional CDFs of Y as:

Fi(y) = P (Y ≤ y|X = i),

then the two RVs are independent if and only if F1 = F2 = . . . = Fi.

Testing if CDFs are equal is quite easy, for each pair (i, j) we use the Kolmogorov-Smirnov
statistic:

Tij = sup
y
|Fi(y)− Fj(y)|.

We can combine these statistics Tij in different ways (take the largest, the sum, etc). Again
determining the asymptotic distribution can be difficult (the Wasserman book gives this for
binary X) but we can use simulation-based methods.


