
36-700: Probability and Mathematical Statistics I Fall 2016
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Lecturer: Siva Balakrishnan

26.1 Review and Outline

In the last class we discussed hypothesis testing:

1. Permutation based two-sample tests

2. Multiple testing: FWER and FWER control

Today we will continue our discussion of multiple testing, and then discuss confidence inter-
vals.

26.2 The False Discovery Rate

The Bonferroni and Sidak corrections we discussed in the last lecture can be very conserva-
tive. They ensure that we do not make even a single false rejection. In scientific experiments
it often makes sense to control what is called the False Discovery Rate (FDR). The FDR
is the expected number of false rejections divided by the number of rejections.

Denote the number of false rejections as V , and the total number of rejections as R. Then
the false discovery proportion is:

FDP =

{
V
R

if R > 0

0 if R = 0.

The FDR is then defined as:

FDR = E[FDP].

In this notation we can see that the FWER is:

FWER = P(V ≥ 1).

We will next consider how one can control the FDR. We will describe a procedure known as
the Benjamini-Hochberg (BH) procedure. We will not prove its correctness (its not difficult
but it is a bit involved).
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26.2.1 The BH procedure

The BH procedure is one that controls the FDR under independence (i.e. the p-values are
independent). There is a much weaker form of this procedure that works under dependence
(see the Wasserman book). It turns out to be very challenging to tightly control FDR under
strong dependence.

The procedure is:

1. Suppose we do T tests. Let us take the p-values p1, . . . , pT , and sort them, i.e. we
create the list: p(1) ≤ p(2) ≤ . . . ≤ p(T ).

2. Define the thresholds:

ti =
iα

T
.

3. Find the largest imax such that

imax = arg max
i
{i : p(i) < ti}.

4. Reject all nulls upto and including imax.

This might seem a bit confusing but here is a simple picture:
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26.2.2 Properties of FDR

We have now see a procedure that controls the FDR under some assumptions. One question
of interest is how does FDR control compare to FWER control? Another is just: how do we
interpret FDR control?

Interpreting FDR control: The way to think about FDR control is: if we repeat our
experiment many times, on average we control the FDP. This is not a statement about the
individual experiment we did conduct, and really it does not say much about how likely it
is that on a given experiment we have an FDP that is larger than a threshold (think about
using Markov’s inequality).

FWER on the other hand, does control the error rate for a single experiment. That is, with
FWER control, we have managed our false discoveries unless we are very unlucky; with FDR
control, on average our test will control FDP, but in our particular experiment we may not
have done a very good job. We will see in a second controlling FWER does control the FDR.
The way to interpret all of this is that: FDR control is a very weak notion of error control.

Connection to FWER:

1. The first connection is that under the global null (when all the null hypotheses are
true) FDR control is equivalent to FWER control.

Proof: Under the global null, any rejection is a false rejection. There are two
possibilities: either we do not reject anything: in this case the FDP = 0. If we do
reject any null hypothesis then our FDP is 1 (since V = R). So we have that:

FDR = E[FDP] = P(V > 0) ∗ 1 + P(V = 0) ∗ 0 = P(V > 0) = FWER.

2. The second connection is that the FWER ≥ FDR always. This implies that controlling
the FWER implies FDR control.

Proof: We can see that the following is a simple upper bound on the FDP:

FDP ≤ I(V ≥ 1),

since if V = 0, FDP = 0, and if V > 0 then V/R ≤ 1. Taking expectations of this
expression gives:

FDR ≤ P(V ≥ 1) = FWER.

The flip-side of this is that FDR control is less stringent so if this is the correct measure
for you then you will have more power by controlling FDR (rather than controlling
FWER).
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26.3 Confidence Intervals

We have already discussed the construction of confidence intervals and asymptotic confi-
dence intervals at various points in the course. Today, we will discuss a way to construct a
confidence interval by inverting a hypothesis test.

Before we do this lets review a simple relation between tests and intervals.

From intervals to tests: Suppose that:

Pθ(θ ∈ Cn(x1, . . . , xn)) = 1− α,

then the test: reject H0 : θ = θ0 if θ0 /∈ Cn(x1, . . . , xn) has size at most α. To see this we
just note that under the null, the probability of rejecting the null is at most α.

From tests to intervals: A natural question is whether we can somehow construct a
confidence interval from a procedure that performs hypothesis tests for us. This is called
inverting a test. We suppose that for every parameter θ0, we have a hypothesis tester with
level α for the hypothesis test:

H0 : θ = θ0

H1 : θ 6= θ0.

The procedure is then simple: we consider every parameter θ and put it in the confidence
set if our tester fails to reject the null hypothesis, i.e. in some sense we are not “sure” that
the parameter is not θ. This results in a confidence set Cn(x1, . . . , xn) with coverage at least
1− α.

This is easy to verify:

Pθ0(θ0 /∈ Cn(x1, . . . , xn)) ≤ P (falsely rejecting null H0 : θ = θ0) ≤ α.

Example: Suppose we saw samples X1, . . . , Xn ∼ N(θ, 1), and our hypothesis test of
choice was the Wald test. We would reject the null hypothesis: θ = θ0 at level α if:

Tn =
√
n

∣∣∣∣∣ 1n
n∑
i=1

Xi − θ0

∣∣∣∣∣ ≥ zα/2.

So the confidence interval we would construct is:

Cn(X1, . . . , Xn) =

{
θ :
√
n

∣∣∣∣∣ 1n
n∑
i=1

Xi − θ

∣∣∣∣∣ ≤ zα/2

}
.

This is just the usual 1− α confidence interval.


