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Lecturer: Siva Balakrishnan

25.1 Review and Outline

In the last class we discussed hypothesis testing:

1. p-values.

2. The χ2 test for multinomials.

Today we will continue our discussion of the χ2 test and then discuss permutation tests and
then finally begin discussion of multiple testing.

25.2 χ2 test

In the last class we discussed the χ2 test for multinomials, today we will consider a different
multivariate example.

Example 1: Suppose we observe X1, . . . , Xn ∼ N(θ, Id), where θ ∈ Rd, and Id is the d× d
identity matrix. We would like to test the hypotheses:

H0 : θ = θ0

H1 : θ 6= θ0.

In this case, we could first form:

θ̂ =
1

n

n∑
i=1

Xi,

and observe that under the null:
√
n(θ̂ − θ0) ∼ N(0, Id).

This motivates the use of the test statistic:

T = n

d∑
j=1

(θ̂j − θ0j)2,
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which under the null has a χ2
d distribution. So we would reject the null hypothesis when:

T ≥ χ2
d,α,

where

P(χ2
d ≥ χ2

d,α) = α.

25.3 Permutation test

The next important test we will discuss is a non-parametric two-sample test. In the two-
sample testing setting we observe:

X1, . . . , Xm ∼ FX ,

and

Y1, . . . , Yn ∼ FY .

The hypotheses we would like to test are:

H0 : FX = FY

H1 : FX 6= FY .

A typical example is in a drug trial where one set of people are given a drug and the other set
are given a placebo. We then would like to know if there is some difference in the outcomes
of the two populations or if they are identically distributed.

There are various possible test statistics, but a common one is to use a difference in means:

T (X1, . . . , Xm, Y1, . . . , Yn) =

∣∣∣∣∣ 1

m

m∑
i=1

Xi −
1

n

n∑
i=1

Yi

∣∣∣∣∣ ,
one could also standardize this statistic by its variance, or consider more complex test statis-
tics based on signs and ranks. Let us denote the test statistic computed on the data we
observed as Tobs.

In general, since we have not assumed anything about FX and FY it is not easy to compute
the distribution of our test statistic, and approximations (based on a CLT for instance) might
be quite bad. The permutation test, gives a way to design an exact α level test without
making any approximations.

The idea of the permutation test is simple. Define N = m + n and consider all N ! permu-
tations of the data {X1, . . . , Xm, Y1, . . . , Yn}. For each permutation we could compute our
test statistic T . Denote these as T1, . . . , TN !.
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The key observation is: under the null hypothesis each value T1, . . . , TN ! has the same
distribution (even if we do not know what it is).

Suppose we reject for large values of T . Then we could simply define the p-value as:

p-value =
1

N !

N !∑
i=1

I(Ti > Tobs).

It is important to note that this is an exact p-value, i.e. no asymptotic approximations are
needed to show that rejecting the null when this p-value is less than α controls the Type I
error at α. Here is a toy-example from the Wasserman book:

Example 2: Suppose we observe (X1, X2, Y1) = (1, 9, 3). Let T (X1, X2, Y1) be the difference
in means, i.e. T (X1, X2, Y1) = 2. The permutations are:

We could use this to calculate the p-value by counting how often we got a larger value than
2:

p-value =
4

6
= 0.66,

so most likely we would not reject the null hypothesis in this case. Typically, we do not
calculate the exact p-value (although in principle we could) since evaluating N ! test statistics
would take too long for large N . Instead we approximate the p-value by drawing a few
random permutations and using them. This leads to the following algorithm for computing
the p-value using a permutation test:
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25.4 Multiple Testing

The problem of multiple testing is one that is fundamental to a lot of science. Typical modern
scientific discovery does not proceed in a simple fashion where we have a single hypothesis
that we would like to test.

A classical example is in the analysis of gene expression data. We measure the expression
of tens of thousands of genes and we would like to know if any of them are associated with
some phenotype (for example whether a person has a disease or not). Typically, the way this
is done is that the scientist does tens of thousands of hypothesis tests, and then reports the
associations that are significant, i.e. reports the tests where the null hypothesis was rejected.

This is very problematic:

Suppose we did 1000 hypothesis tests, and for each of them rejected the null when the p-
value was less than α = 0.05. How many times would you expect to falsely reject the null
hypothesis?

The answer is we would expect to reject the null hypothesis 50 times. So we really cannot
report all the discovered associations (rejections) as significant because we expect many false
rejections.

The multiple testing problem is behind a lot of the “reproducibility crisis” of modern science.
Many results that have been reported significant cannot be reproduced simply because they
are false rejections. Too many false rejections come from doing multiple testing but not
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properly adjusting your tests to reflect the fact that many hypothesis tests are being done1.

The basic question is how to we adjust our p-value cutoffs to account for the fact that
multiple tests are being done.

25.4.1 The Family-Wise Error Rate

We first need to define what the error control we desire is. Recall, the Type I error controls
the probability of falsely rejecting the null hypothesis. We have seen that in order to control
the Type I error we can simply threshold the p-value, i.e rejecting the null if the p-value ≤ α
controls the Type I error at α.

One possibility (and we will discuss a different one in the next lecture) is that when a scientist
does multiple tests we care about controlling the probability that we falsely reject any null
hypothesis. This is called the Family-Wise Error Rate (FWER).

The FWER is the probability of falsely rejecting the null hypothesis even once amongst the
multiple tests.

The basic question is then: how do we control the FWER?

25.4.2 Sidak correction

Suppose we do p hypothesis tests, and want to control the FWER at α.

The Sidak correction says we reject any test if the p-value is smaller than:

p-value ≤ 1− (1− α)1/p = αt,

so we reject any test if its p-value is less than αt.

The main result is that: if the p-values are all independent then the FWER ≤ α.

Proof: Suppose that all the null hypotheses are true (this is called the global null). You
can easily see that if this is not the case you can simply ignore all the tests for which the null
is false. The probability of falsely rejecting a fixed test is αt, so we correctly fail to reject it
with probability 1− αt.

Since the p-values are all independent the probability of falsely rejecting any null hypothesis
is:

FWER = 1− (1− αt)p = α.

1Too many false rejections can also arise from tests that do not properly control the α level but this is
usually easier to detect/fix.
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25.4.3 Bonferroni correction

The main problem with the Sidak correction is that it requires the independence of p-values.
This is unrealistic especially if you compute the test statistics for the different tests on the
same set of data. The Bonferroni correction instead uses the union bound to avoid this
assumption.

The Bonferroni correction says we reject any test if the p-value is smaller than:

p-value ≤ α

p
.

The main result is that: The FWER ≤ α.

Proof: Suppose again that the global null is true. In this case,

FWER = P

(
p⋃
i=1

reject H0i

)
≤

p∑
i=1

P (reject H0i) ≤
p∑
i=1

α

p
= α,

where the first inequality follows from the union bound.

25.4.4 Something to think about

In the above discussion we assumed that there was a single scientist doing a bunch of tests
so he could appropriately correct his procedure for the multiple testing problem.

One thing to ponder is really what error rate should we be controlling, i.e. maybe I am the
editor of a journal, and I want to ensure that across all articles in my journal the FWER is
≤ α. Maybe I want this to be true across the entire field? Should I be adjusting my p-values
for people in other disciplines? Sounds absurd but it actually makes sense if you think about
each of these procedures and their implications for reproducibility.


