
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 23: October 26
Lecturer: Siva Balakrishnan

23.1 Review and Outline

In the last class we discussed hypothesis testing:

1. Basic setup, the null and alternate hypothesis.

2. Construction of tests.

3. The power function and the Neyman-Pearson paradigm.

Today we will discuss a general method to construct the optimal test for particular simple
hypothesis testing problems. This test is called the Neyman-Pearson test or the likelihood
ratio test. After this we will discuss other general ways to construct tests. The second half
will follow the Wasserman book.

23.2 The Neyman Pearson test

23.2.1 Simple versus simple hypothesis tests

The setting we will be interested in is where both the null and alternate hypotheses are
simple hypotheses, i.e., there are two parameters θ0 and θ1 such that:

H0 : θ = θ0

H1 : θ = θ1.

We will denote the null density as f0 and the alternate density as f1.

23.2.2 The power of a statistical test

The power of a test is just the probability of correctly rejecting the null, i.e., the probability
of rejecting the null when the alternate is true. To remind you the size of a test is the
probability of incorrectly rejecting the null – this is the quantity we usually control at α.
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We will also associate every test with a test function φ. We will keep things simple: for us
tests are deterministic, i.e. once you see the data you either reject the null or accept it (you
do not randomize this decision). Recall, that R is the rejection region for our test, i.e. if
x ∈ R we reject the null and otherwise we accept it. When our actions are deterministic the
test function for a test T:

φ(x) =

{
1, if x ∈ R
0, if x /∈ R.

So we can write the power of a test as:∫
x

φ(x)f1(x)dx and the size as

∫
x

φ(x)f0(x)dx.

23.2.3 The Neyman Pearson test

The Neyman Pearson test statistic is to take the likelihood ratio:

Λ(x) =
L(x; θ0)

L(x; θ1)
=
f0(x)

f1(x)

and to reject if this value is small. Again, we will compute the precise cut-off by controlling
the probability of making a Type I error. That is we select a threshold t∗ such that:

P0(Λ(x) ≤ t∗) = α.

One nice thing about this is that it is a “general recipe” for doing a hypothesis test. The
drawback of course is that it only applies to the restricted class of simple versus simple tests.

The Neyman-Pearson test, despite its restricted applicability is a very important conceptual
contribution. When it is applicable it is an optimal test. This is often called the Neyman-
Pearson Lemma, and we will prove this today.

23.2.4 The Neyman-Pearson Lemma

The Neyman-Pearson Lemma says that the NP test, is the most powerful test of size α. This
means that if we have any other test that controls the Type I error rate at α, then its power
is at most the power of the NP test.

Proof: Let us denote the test function of the NP test as φNP and the test function of any
other test we want to compare against as φA.
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To prove the NP Lemma, we will first argue that the following is true:∫
x

(φNP (x)− φA(x))︸ ︷︷ ︸
T1

(
f1(x)− f0(x)

t∗

)
︸ ︷︷ ︸

T2

dx ≥ 0.

To see this we can just consider some cases:

1. If both tests reject or if both tests accept then the inequality is clearly true since the
LHS is 0.

2. If NP rejects, and the test A accepts then φNP (x) = 1, and φA(x) = 0, so T1 ≥ 0.
Since the NP test rejected the null we know that:

f0(x)

f1(x)
≤ t∗,

so that T2 ≥ 0. So the inequality is true in this case.

3. If NP accepts and the test A rejects then both T1 and T2 are negative so the inequality
is also true in this case.

So we can see that for every x, T1 × T2 ≥ 0 so it is true when we integrate over x. Now, we
can rearrange this inequality to see that:∫

x

(φNP (x)− φA(x))f1(x)dx ≥ 1

t∗

∫
x

(φNP (x)− φA(x))f0(x)dx

=
1

t∗

∫
x

φNP (x)f0(x)dx︸ ︷︷ ︸
=α

−
∫
x

φA(x)f0(x)dx︸ ︷︷ ︸
≤α


≥ 0.

This proves the NP lemma, i.e. that the power of the NP test is larger than the power of
any other test.

23.3 The Wald Test

The Wald test considers hypothesis testing problems of the form:

H0 : θ = θ0

H1 : θ 6= θ0,
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although it is much more broadly applicable.

Wald basically suggested that we use an estimator that is asymptotically normal (under the
null), i.e. for example we could use the MLE. We have seen that under the null hypothesis
the MLE typically satisfies: √

nI(θ0)(θ̂ − θ0)→ N(0, 1),

in distribution as n→∞. So an idea would be to use this as our test statistic, i.e.:

Tn =
√
nI(θ0)(θ̂ − θ0),

and then construct the rejection threshold the same way we did in the last lecture. As in
point estimation we could also estimate the Fisher information and use:

Tn =

√
nI(θ̂)(θ̂ − θ0).

This statistic will be more meaningful under the alternate since it will still have a standard
normal distribution. We reject the null hypothesis if:

|Tn| ≥ Φ−1
(

1− α

2

)
.

It is easy to see that asymptotically this is a correct size-α test.

Example: Suppose that we were testing the null H0 : p = p0 in a Bernoulli problem. We
would use:

Tn =
p̂− p0√

p0(1− p0)/n
,

and reject the null if |Tn| ≥ Φ−1
(
1− α

2

)
.

23.3.1 The power of the Wald test

Suppose that we use the statistic:

Tn =

√
nI(θ̂)(θ̂ − θ0),

and that the true value of the parameter is θ1 6= θ0 then the probability that the Wald test
rejects the null hypothesis is roughly:

1− Φ
(√

nI(θ1)(θ0 − θ1)− Φ−1
(

1− α

2

))
+ Φ

(√
nI(θ1)(θ0 − θ1) + Φ−1

(
1− α

2

))
.

We will not prove this but it follows just from some simple algebra on the power function
evaluated at θ1. There are some aspects to notice:



Lecture 23: October 26 23-5

1. If the difference between θ0 and θ1 is very small the power will tend to 0.

2. As n→∞ the two Φ terms will approach either 0 or 1, and so the power will approach
1.

3. As a rule of thumb the Wald test will have non-trivial power if |θ0 − θ1| � 1√
nI(θ1)

.


