
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 19: October 12
Lecturer: Siva Balakrishnan

19.1 Review and Outline

In the last class we discussed linear regression:

1. Non-parametric regression for Lipschitz functions in 1D

2. General non-parametric regression

Today we will discuss non-parametric density estimation. This material is also in Chapter
20 of the Wasserman book.

19.2 Density Estimation

The task in density estimation is that we receive i.i.d. samples:

X1, . . . , Xn ∼ f

where f is some (smooth) density, and would like to estimate f . Our earlier lectures on
point estimation essentially addressed the parametric analogue of this problem. Concretely,
we have seen how to estimate θ under the hypothesis that:

X1, . . . , Xn ∼ fθ,

and today we will study the non-parametric analogue of this problem. We will focus mostly
on the one-dimensional case.

19.3 Histograms

Suppose that X1, . . . , Xn ∼ f , where f is a density supported on [0, 1] (this restriction is not
critical). A natural estimator in this context is to bin the samples in a certain way, i.e., we
define the bins B1, . . . , Bm to be:

B1 =

[
0,

1

m

)
, B2 =

[
1

m
,

2

m

)
, . . . , Bm =

[
m− 1

m
, 1

]
.
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Let ν1, . . . , νm be the number of samples in each bin. We can then estimate the probability
mass of each bin as:

p̂1 =
ν1
n
,

...

p̂m =
νm
n
.

To estimate the density (our original goal) we use for an x that lies in the ith bin:

f̂(x) =
mνi
n
.

We can also write this in terms of the bin-width h = 1
m

as:

f̂(x) =
p̂i
h
.

We can also express this as:

f̂(x) =
m∑
i=1

p̂i
h
I(x ∈ Bi).

As a sort of basic sanity check we can see that if x ∈ Bi then

E[f̂(x)] =
E[p̂i]

h
=
pi
h

=

∫
x∈Bi

f(x)dx

h
≈ hf(x)

h
= f(x).

The ≈ comes from assuming that the function f does not change much over the bin if h is
small. You might already be able to smell a bias-variance tradeoff.

19.4 Analyzing the histogram

Once again we will use the integrated squared loss:

R(f̂ , f) =

∫
x

b2(x)dx+

∫
x

v(x)dx,

where b(x) is the bias of our estimator at x and v(x) is the variance of our estimator at
x. We will assume that the unknown density is L-Lipschitz. Observe that unlike in the
non-parametric regression case, we need very few assumptions for density estimation.

Our goal will be to show that:

R(f̂ , f) ≤ (Lh)2 +

[
1

nh
+
L

n

]
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Before we prove this, let us develop some consequences: the optimal bandwidth is

h =

(
1

2nL2

)1/3

,

and this gives us that the risk:

R(f̂ , f) ≤ 4

(
L

n

)2/3

+
L

n
≤ 5

(
L

n

)2/3

,

for sufficiently large n (since L is a constant). We observe that the rate again is slower than
the usual 1/n rate in parametric problems. Coincidentally, this is roughly the same rate as
in regression where E[Y |X = x] is L-Lipschitz.

Bounding the Bias: Recall that:

b(x) = E[f̂(x)]− f(x).

Suppose that x ∈ Bi then

b(x) =
pi
h
− f(x)

=
1

h

[∫
Bi

(f(u)− f(x))du

]
≤ 1

h

∫
Bi

Lhdu = Lh.

Bounding the Variance: We can see that:

v(x) = E(f̂(x)− Ef̂(x))2

=
E(p̂i − pi)2

h2
=
pi(1− pi)
nh2

≤ pi
nh2

=
1

nh2

∫
Bi

f(u)du

≤ 1

nh2

∫
Bi

(f(x) + Lh)du

=
f(x) + Lh

nh

Integrating this we obtain the integrated variance:∫
x

v(x)dx ≤ 1

nh
+
L

n
,

as desired.
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19.5 The general case

As in the regression setting one can ask what the rate of convergence is if f is β-times
differentiable, and we are estimating a d-dimensional density.

In this case, as in the regression case, the optimal rate is n−2β/(2β+d). Somewhat surprisingly
this rate is not achieved by histograms, and we more generally need to use kernel density
estimators. We will discuss these in the next lecture.

For now, let us again reflect on the curse of dimensionality. Suppose we fixed β = 1 (i.e.
Lipschitz densities) and then said how many samples do we need to get a squared error of
0.1 in d dimensions.

We would solve the expression n−2/(2+d) ≤ 0.1, i.e., we need:

log10 n ≥
2 + d

2
,

or in other words:

n ≥ 101+d/2.

This is astronomical for large d, i.e., this gives:

n ≥ 32 if d = 1

n ≥ 100 if d = 2

...

n ≥ 106 if d = 10.

Roughly, a million points in 10-dimensions is equivalent to 32 points in 1D. In many problems
we have hundreds or thousands (or many more) features, and you can see immediately that
non-parametric methods will fail miserably in these settings.


