
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 18: October 10
Lecturer: Siva Balakrishnan

18.1 Review and Outline

In the last class we discussed linear regression:

1. Multiple Regression

2. Statistical Modeling

3. Non-parametric Regression

Today we will continue our discussion of non-parametric regression. Particularly, we focus
on understanding the bias-variance tradeoff in non-parametric regression.

18.2 Non-parametric Regression

Recall that broadly in regression our goal is to estimate the regression function r(x) =
E[Y |X = x]. Unlike the CDF which we could estimate with no assumptions about the
distribution, here we will need smoothness assumptions, i.e. we will need to assume that
r(x) is a smooth function of x. This allows us to gain statistical strength by averaging near
by points.

Suppose we construct an estimate r̂(x). Then a natural measure of how well we do is the
squared loss, except since these are functions this is called the integrated squared loss, i.e.:

L(r̂, r) =

∫
(r̂(x)− r(x))2dx.

The risk is then just the expected loss, i.e.:

R(r̂, r) = E
(∫

(r̂(x)− r(x))2dx

)
.

As in the case of point estimation we have a bias variance decomposition. First we define
the point-wise bias:

b(x) = E(r̂(x))− r(x),
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and the point-wise variance:

v(x) = E(r̂(x)− E(r̂(x)))2.

Now, as before we can verify that:

R(r̂, r) =

∫
b2(x)dx+

∫
v(x)dx.

A natural strategy in non-parametric regression is to locally average the data, i.e. our
estimate of the regression function at any point will be the average of the Y values in a small
neighborhood of the point.

The width of this neighborhood will determine the bias and variance. Too large a neighbor-
hood will result in high bias and low variance (this is called oversmoothing) and too small a
neighborhood will result in low bias but large variance (this is known as undersmoothing).

18.3 Kernel Regression

One of the most basic ways of doing non-parametric regression is called kernel regression.
We will analyze kernel regression when we only have one covariate. The general case is not
very different.

Here the estimator is defined as:

r̂(x) =
n∑
i=1

wi(x)Yi,

where the weights assign more importance to points near x. This is called a kernel regressor
when the weights are chosen according to a kernel, i.e. we have weights:

wi(x) =
K
(
x−Xi

h

)∑n
i=1K

(
x−Xi

h

) ,
where h controls the amount of smoothing. It is called the bandwidth. As a typical common
example we have the Gaussian kernel:

K(x) =
1√
2π

exp(−x2/2).

18.4 Analysis of Kernel Regression

In this section we will provide a simple analysis of kernel regression. We will do so under
various (strong) assumptions. We make these assumptions so that we can prove our main
result in this lecture.
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We assume that

yi = r(xi) + εi,

where:

1. Assumptions about the design: We will assume that xi is one-dimensional, and
equally spaced on [0, 1]. In general, we do not need that the design is equally spaced
but intutively we do need to ensure that we see some points in the vicinity of each
point where f is non-zero.

2. Assumptions about the regression function: We will assume that the function
r(x) = E[Y |X = x] is L-Lipschitz, i.e. that there is some constant L such that:∣∣∣∣ ddxr(x)

∣∣∣∣ ≤ L.

3. Assumptions about the noise: We will assume that the noise is i.i.d and that
E[εi] = 0,Var[εi] = σ2.

4. Assumptions about the kernel: We will assume that the kernel is the spherical
kernel :

K(x) = I(−1 ≤ x ≤ 1).

Again the result we prove holds for a much broader class of kernels but we make this
assumption to simplify the proof.

The main result: Suppose that the bandwidth h ≥ 1/n, then the point-wise bias of the
kernel regression estimator:

b(x) = E[r̂(x)]− r(x) ≤ Lh,

and the point-wise variance:

Var(r̂(x)) = E(r̂(x)− E(r̂(x)))2 ≤ σ2

nh
.

Before, we prove the theorem let us observe that we can calculate the integrated risk:

R(r̂, r) =

∫
b2(x)dx+

∫
v(x)dx ≤ L2h2 +

σ2

nh
,

a natural strategy would be to choose the bandwidth to minimize this expression. Choosing

h =

(
σ2

2nL2

)1/3

,
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we obtain that

R(r̂, r) ≤ 2L2/3σ4/3

n2/3
= 2

(
Lσ2

n

)2/3

.

This result already reveals something fundamental about non-parametrics. We see that with
an optimally chosen bandwidth, the MISE decreases to 0 at rate n−2/3. By comparison,
most parametric estimators converge at rate n−1. The slower rate of convergence is the price
we pay for being nonparametric. The formula for the optimal bandwidth is not useful in
practice since it depends on the unknown Lipschitz constant L, and the typically unknown
noise variance.

With all of these preliminaries in place let us prove the result:

Bounding the bias: The bias is given by:

b(x) = |Er̂(x)− r(x)| =

∣∣∣∣∣E
[

n∑
i=1

(wi(Xi)(Yi − r(x)))

]∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(wi(Xi)(r(Xi)− r(x)))

∣∣∣∣∣ ≤
n∑
i=1

w(Xi)|r(Xi)− r(x)|

≤ Lh
n∑
i=1

w(Xi) = Lh.

At a high-level, the kernel regressor aggregates Y values from nearby points, and the bias
just captures how much the true function can change over this region.

Bounding the variance: We note first that each weight is upper bounded as:

wi(Xi) ≤
1

nh
.

Returning to the variance we obtain:

v(x) = E(r̂(x)− E(r̂(x)))2 = E

(
n∑
i=1

(wi(Xi)(Yi − f(Xi)))

)2

= E

(
n∑
i=1

εiwi(Xi)

)2

=
n∑
i=1

wi(Xi)
2E(ε2i ) = σ2

n∑
i=1

wi(Xi)
2

≤ σ2 n
max
i=1

wi(Xi)
n∑
i=1

wi(Xi) ≤
σ2

nh
.

This completes our analysis.
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18.5 The general case

More generally, suppose that the βth derivative of r(x) is bounded, and we are in d-dimensions.
In this case the bias will be roughly:

b2(x) ≈ h2β,

and the variance:

v(x) ≈ 1

nhd
,

and balancing these will lead to the rate of convergence:

R(r̂, r) ≈ n−2β/(2β+d).

This reveals another crucial feature of non-parametrics. In linear regression, the rate of
convergence is typically something like:

R(β̂, β) ≈ d

n
.

In both cases, the situation gets worse as d increases, however in non-parametrics the situ-
ation gets exponentially worse. This is often colloquially referred to as the curse of dimen-
sionality.


