
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 16: October 5
Lecturer: Siva Balakrishnan

16.1 Review and Outline

In the last class we began discussing linear regression:

1. The Least Squares principle

2. Simple linear regression and the least squares estimate

3. Least squares and MLE

As a quick note: you should observe that our derivation of the least squares estimates at
no point used/required the assumption that y was a linear function of x. In this case, you
should interpret the fit as the best linear approximation to the true regression function.
Most of what we will do today will in fact assume that the true regression function is linear
although there are analogous statements that are true when the assumption is false.

In today’s lecture we will study some basic statistical properties of the least squares estimates,
and talk about linear regression with multiple predictors.

16.2 Statistical Properties of the LS Solution

16.2.1 Bias

We will focus on the fixed design setting, and condition on the values of X1, . . . , Xn. We
would like to show that:

E[β̂0|X1, . . . , Xn] = β0

E[β̂1|X1, . . . , Xn] = β1.

Let us note first that we can express:

β̂1 =
1
n

∑n
i=1(Xi − X̄)(Yi − Ȳ )
1
n

∑n
i=1(Xi − X̄)2

=
1
n

∑n
i=1(XiYi − X̄Ȳ )

1
n

∑n
i=1(Xi − X̄)2
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using the model assumption we have that Yi = β0 + β1Xi + εi, we can calculate:

Ȳ = β0 + β1X̄ + ε̄,

so we obtain

β̂1 =
1
n

∑n
i=1Xi(β0 + β1Xi + εi)− X̄(β0 + β1X̄ + ε̄)

1
n

∑n
i=1(Xi − X̄)2

= β1 +
1
n

∑n
i=1Xiεi − X̄ε̄

1
n

∑n
i=1(Xi − X̄)2

= β1 +
1
n

∑n
i=1(Xi − X̄)εi

1
n

∑n
i=1(Xi − X̄)2

,

so that we have:

E[β̂1|X1, . . . , Xn] = β1 +
1
n

∑n
i=1(Xi − X̄)E[εi|X1, . . . , Xn]

1
n

∑n
i=1(Xi − X̄)2

= β1.

Similarly, we can calculate that E[β̂0|X1, . . . , Xn] = β0. In more detail, we first observe that:

Ȳ = β0 + β1X̄ + ε̄,

so that

E[β̂0|X1, . . . , Xn] = E[Ȳ − X̄β̂1|X1, . . . , Xn]

= β0 + E[X̄(β1 − β̂1)] + Eε̄
= β0.

16.2.2 Variance

We will do the derivation for β1 and leave the derivation for β0 as an exercise.

Var(β̂1|X1, . . . , Xn) = Var

(
β1 +

1
n

∑n
i=1(Xi − X̄)εi

1
n

∑n
i=1(Xi − X̄)2

|X1, . . . , Xn

)
=

(
1
n2

∑n
i=1(Xi − X̄)2σ2

)(
1
n

∑n
i=1(Xi − X̄)2

)2
=

σ2

n
(
1
n

∑n
i=1(Xi − X̄)2

) .
There are intuitive ways to understand this expression: the variance of our estimate goes
up as the noise variance goes up, and goes down as we collect more data, and as we spread
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out our measurements. The last part needs a bit of thought but it should be intuitive that
we can estimate the slope of a line much better from well spaced measurements than if they
were all very close together.

As an exercise show that the variance of β̂0 is given by:

Var(β̂0|X1, . . . , Xn) =
σ2 1

n

∑n
i=1X

2
i

n
(
1
n

∑n
i=1(Xi − X̄)2

) .
16.2.3 Random Design Regression

There are cases, when we are genuinely interested in unconditional-on-X properties of the
regression coefficients. In this context, we suppose that we are sampling data from some
population (i.e. the Xs are random).

In this case, we can see that (again we only do the calculation for β1):

E[β̂1] = E[E[β̂1|X1, . . . , Xn]]

= β1

Var(β̂1) = E[Var(β̂1|X1, . . . , Xn)] + Var(E[β̂1|X1, . . . , Xn])

=
σ2

n
E
[

1
1
n

∑n
i=1(Xi − X̄)2

]
.

As you can see this variance formula now accounts for both types of variability. The vari-
ability for a fixed sample, but also for the the variability in the sample itself.

The random design setting makes it a bit easier to talk about things like consistency, which
require some creativity to reason about in the fixed design setting: it is worth pondering
the question if we can only compute conditional on X quantities what does it mean to let n
grow?

16.2.4 Confidence Intervals

In this section, we focus on the random design setting. Given the above bias and variance
calculations, consistency of the least squares estimates should not be surprising, i.e.:

β̂0 → β0,

β̂1 → β1,

in probability.
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It is further true that:

β̂0 − β0√
Var(β̂0|X1, . . . , Xn)

→ N(0, 1),

β̂1 − β1√
Var(β̂1|X1, . . . , Xn)

→ N(0, 1),

in distribution. This of course allows us to construct confidence intervals in the usual way.

16.3 Parameter Interpretation

It is important to not attach causal semantics to regression. We will discuss causal inference
(briefly) in the last third of the course. This happens surprisingly often.

Some valid interpretations:

1. β0 = E[Y |X = 0]. You might wonder why the point X = 0 gets special significance
(essentially its own parameter), but this setting does ensure.

2. For any two values x1, x2:

β1 =
E[Y |X = x1]− E[Y |X = x2]

x1 − x2
.

This of course is just re-writing the fact that β1 gives the slope of the regression line.

The second statement is often (incorrectly) given causal semantics, i.e. if I change X by 1
unit, then on average Y will change by β1 units. This is wrong, and we will dig deeper into
this when we talk about causal inference.

What is correct however, is that if we looked at all the data where X differed by 1 unit, and
looked at the expected difference of Y it would be β1 units. A causal statement assumes
some kind of manipulation or intervention, regression is just a statement about the observed
data (without any manipulation/intervention).

16.3.1 Prediction Intervals

We will not discuss this in detail (see the Wasserman book). Often we obtain a new X and
use our estimated regression coefficients to compute a predicted value for Y :

Y = β̂0 + β̂1X.
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We might also like an interval Cn such that:

P(Y ∗ ∈ Cn) ≥ 1− α,

where Y ∗ is the true unobserved value of Y .

16.4 General Linear Regression

In the general setting the covariate is a d dimensional vector, so we observe (Y1, X1), . . . , (Yn, Xn)
where each Xi ∈ Rd.

The regression model is written succinctly as:

y = Xβ + ε,

where y ∈ Rn, X ∈ Rn×d, ε ∈ Rn, and β ∈ Rd.

At this point I will assume you are familiar with matrix calculus. If not some of the review
aids at the bottom of this page: http://www.stat.cmu.edu/ ryantibs/convexopt/ might
be helpful.

The least squares estimate:

β̂ = arg min
β

1

2
‖y −Xβ‖22

Again we take the derivative with respect to β and set it to 0, in this case this gives:

−XT (y −Xβ̂) = 0,

i.e. that:

XTy = (XTX)β̂,

from which we obtain the LS estimator:

β̂ = (XTX)−1XTy.

An exercise: You should be able to recover our previous estimates for β0, β1 by taking X
to be the matrix where the first column is always 1 and the second column is the single
observed covariate.

One way to obtain the bias and variance of the LS estimator is to assume the noise is
Gaussian, i.e. that

ε ∼ N(0, σ2I).
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In this case, we obtain that:

β̂ = (XTX)−1XTy = (XTX)−1XT (Xβ + ε) = β + (XTX)−1XT ε.

So as before we can calculate that the least squares estimator is unbiased, and its variance
is simply the variance of the second term, i.e.:

Var(β̂|X1, . . . , Xn) = Var((XTX)−1XT ε).

Now, you will need a fact about multivariate Gaussians: if u ∼ N(0, σ2I) then for any matrix
M , Mu ∼ N(0, σ2MMT ). Using this you can calculate that:

Var(β̂|X1, . . . , Xn) = σ2(XTX)−1,

and furthermore that:

β̂ ∼ N(β, σ2(XTX)−1),

which you can use to construct confidence intervals. When the noise is not Gaussian, the bias
and variance calculations are still correct, and the distributional result is true asymptotically,
i.e. as n→∞ with d fixed.


