
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 15: October 3
Lecturer: Siva Balakrishnan

15.1 Review and Outline

Last class we discussed:

• The bootstrap

• Using the bootstrap to compute variances and confidence sets

• Parametric bootstrap

This week we will talk about (linear) regression. We will re-visit topics in point estimation
(efficiency, the Cramer-Rao bound etc.) later on in the course. Today’s material is in Chapter
13 of the Wasserman book.

Regression is one the most basic and important tools in data analysis. In regression, we
study the relationship between a response variable Y , and a predictor, feature or covariate
X. One way to understand the relationship between the predictor and co-variate is through
the regression function

r(x) = E[Y |X = x] =

∫
y

y f(y|x)dy.

Broadly, the goal of regression is to estimate the regression function from observations, i.e.
we observe pairs (X1, Y1), . . . , (Xn, Yn) ∼ FX,Y , and would like to estimate the regression
function.

15.2 Simple Linear Regression

In linear regression, we assume further that r is linear (or is well approximated by a linear
function). Simple linear regression refers to the case when X is 1-dimensional, i.e., we
measure a single covariate. In this case we have that

r(x) = β0 + β1x.
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We can define the noise as:

ε = y − r(x).

Now, it is easy to see that E[ε | X = x] = 0. We will further assume that the model is
homoskedastic, i.e., that the variance of ε does not depend on the value x. In this case we
can denote:

Var(ε|X = x) = σ2.

With all of this we can now define the homoskedastic simple linear regression model.

y = β0 + β1x+ ε,

where E[ε | X = x] = 0, and Var[ε | X = x] = σ2. Is this a parametric model or a non-
parametric model?

There are three unknown parameters in the model (β0, β1, σ). Typically, we estimate the

regression coefficients from the data, i.e., we find (β̂0, β̂1), and obtain the fitted line:

r̂(x) = β̂0 + β̂1x.

On our original data we can estimate fitted values,

Ŷi = r̂(Xi),

and residuals,

ε̂i = Yi − Ŷi.

The residual sums of squares (RSS) is defined as

RSS =
n∑
i=1

ε̂2i .

The RSS gives an assessment of how good our linear fit is to the data. It also gives us a
natural criterion to try to minimize. The least squares estimate (β̂0, β̂1) are the ones that
minimize the RSS. The least squares estimator can be computed in closed-form.

Observe that:

(β̂0, β̂1) = arg min
β0,β1

1

2n

n∑
i=1

(yi − β0 − β1xi)2.

Taking partial derivatives and setting them to zero we see that our estimator must satisfy:

1

n

n∑
i=1

(yi − β0 − β1xi) = 0

1

n

n∑
i=1

xi(yi − β0 − β1xi) = 0.
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Solving this system of equations yields:

β̂1 =

∑n
i=1(xi − X̄)(yi − Ȳ )∑n

i=1(xi − X̄)2
,

β̂0 = Ȳ − β̂1X̄.

There are many important statistical properties of the least squares estimator. As a first
step however we establish some numerical properties of the least squares solution:

1. The least squares line passes through the center of mass, i.e., the point (X̄, Ȳ ).

2. The residuals have mean zero, i.e.:

n∑
i=1

ε̂i = 0.

This is in some sense desirable since we assumed this about the population residuals.

3. The residuals are uncorrelated with the predictor, i.e.,

n∑
i=1

ε̂ixi = 0.

This intuitively suggests that we have extracted all the “linear juice” out of our pre-
dictor, i.e., no linear function of our predictor helps to further reduce the residual.

15.3 Least Squares and MLE

As we noted previously, the least squares model we defined is not a parametric model so it
is not completely obvious how to define a likelihood/MLE.

Suppose however we add the assumption that εi|Xi ∼ N(0, σ2). In this case, the linear
regression model is a parametric model, with:

Yi|Xi ∼ N(β0 + β1Xi, σ
2).

This is sometimes called fixed design regression, as opposed to random design regression
where the covariates are also random. For our purposes it will not matter if the covariates
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are random or not. The likelihood of the observed data is given as

L =
n∏
i=1

f(Xi, Yi)

=
n∏
i=1

f(Xi)f(Yi|Xi)

=
n∏
i=1

f(Xi)
n∏
i=1

f(Yi|Xi).

The first term above does not depend on the parameters so we can ignore it (sometimes it
is referred to as ancilliary). In order to maximize the likelihood we can focus on the second
term:

L ∝ σ−n
n∏
i=1

exp

(
−(yi − β0 − β1xi)2

2σ2

)
.

So in order to maximize this we could maximize the following

logL = C − n log σ − 1

2σ2

n∑
i=1

(yi − β0 − β1xi)2.

Of course, maximizing this over (β0, β1) leads to the least squares solution. We could also
maximize over σ. A simple exercise will show that:

σ̂2 =
1

n

n∑
i=1

ε̂2i ,

is the MLE for σ. To summarize, the MLE when assuming Gaussian noise is simply the
least squares estimator. Of course, the least squares solution makes sense even without this
assumption (but it is no longer the MLE). Another quick note: a somewhat long calculation
will show that this estimator of σ is biased. An unbiased estimator of σ is:

σ̂2
unbiased =

1

n− 2

n∑
i=1

ε̂2i ,

and this estimator is often used in practice.

15.4 Statistical Properties of the LS Solution

We will discuss more of these in the next lecture but for today lets focus on showing that
the LS solution for (β̂0, β̂1) is unbiased. Again we will focus on the fixed design setting, and
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condition on the values of X1, . . . , Xn. We would like to show that:

E[β̂0|X1, . . . , Xn] = β0

E[β̂1|X1, . . . , Xn] = β1.

Let us begin with the second statement:

E[β̂1|X1, . . . , Xn] = E
(

Cov(X, Y )

Var(X)
|X1, . . . , Xn

)
,

since Y = β0 + β1X + ε, we have that

E[β̂1|X1, . . . , Xn] = E
(

Cov(X, β0 + β1X + ε)

Var(X)
|X1, . . . , Xn

)
= β1

Cov(X,X)

Var(X)
= β1.

Similarly, we can calculate that E[β̂0|X1, . . . , Xn] = β0. In more detail, we first observe that:

Ȳ = β0 + β1X̄ + ε̄,

so that

E[β̂0|X1, . . . , Xn] = E[Ȳ − X̄β̂1|X1, . . . , Xn]

= β0 + E(X̄(β1 − β̂1)] + Eε̄
= β0.


