36-700: Probability and Mathematical Statistics I Fall 2016
Lecture 13: September 28

Lecturer: Siva Balakrishnan

13.1 Review and Outline

Last class we discussed:

e Consistency of the MLE
e The Fisher Information

e Asymptotic Normality of MLE

In today’s lecture we will discuss some non-parametric estimation problems and discuss the
plug-in method to estimate functionals. This is Chapter 7 of the Wasserman book. In the
next lecture we will consider methods for estimating standard errors of the plug-in estimator.

13.2 Estimating the CDF

Formally, the setting is that we observe Xi,..., X, ~ F, and would like to estimate F'.
Perhaps worth noting that we impose absolutely no restrictions on F'. Further, there is no
notion of a (finite-dimensional) parameter that we can attempt to estimate in this context.

Some typical applications:

1. Estimating (many) interval probabilities:  Suppose we observe a stochastic
quantity many times, and are then interested in estimating the probability P(a <
X < b) for some fixed [a,b]. In this case we would just use the empirical counts, and
use the empirical variance to get some idea of the variability. We could even use the
CLT /Hoeffding’s inequality to obtain concentration bounds, and confidence intervals.

Suppose now [ wanted to estimate this probability for many intervals: [ay, b1], [az, bs], ..., [ak, bk]
for some very large k, and I want simultaneous confidence intervals, i.e., I want ev-

ery confidence interval to cover the corresponding probability with probability at least

1 — . The naive way to do this would be to estimate each probability and do a union

bound. Wouldn't it be nice if we could instead estimate the entire CDF reliably?
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2. The Kolmogorov-Smirnov test: This is only somewhat related to the estima-
tion question we focus on today, but one other important use of the CDF is to test
hypotheses about distributions, i.e. suppose I think my samples X;,..., X, have a
N(0,1) distribution. A natural way to test this hypothesis is by comparing the CDF
of my samples to the CDF of a N(0,1) distribution. In order to be more rigorous
about the performance of such a test however, we need to understand a basic question:

suppose the samples were truly from a N(0, 1) distribution, how far would we expect
the sample CDF to be from the N(0,1) CDF?

Our estimator for the CDF will just be the empirical CDF': the empirical CDF corresponds
to the pmf that puts mass 1/n at each data point Xj, i.e.:
Fn(ﬂf): Zz:l ( _.I).

n

Let us try to investigate some basic properties of this estimator. Suppose we fix a value x:

1. Bias: The estimator we have proposed is unbiased, i.e.:

E(F, () = 2 BI S D) gy oy

n

2. Variance: The variance of the estimator is:

P(X < 2)(1 - P(X < z))

Var(ﬁn(x)) =

3. MSE: The MSE at z is just the squared bias 4 variance, i.e.,

MSE — P(X <z)(1-P(X <x)) o0,

n

as n — 0o. From this we can conclude that for any fixed = our estimator converges in

probability, i.e. that:
P(|F,(z) — F(z)| > €) — 0,

as n — 0o.
There are two additional important results that we will not prove but are worth knowing;:

1. Glivenko-Cantelli: The Glivenko-Cantelli theorem is essentially a uniform LLN (we
discussed these before briefly in the previous lecture). Precisely, it says that

sup|F(x) — Fu(z)| = 0,
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almost surely. We have not seen almost sure convergence before but note that it implies
convergence in probability. To emphasize, the previous result was a statement for a
fixed x. The Glivenko-Cantelli theorem assures us that the empirical CDF converges
to the true CDF uniformly, i.e. for every value x simultaneously.

2. DKW (Dvoretzky-Kiefer-Wolfowitz): The DKW inequality is a concentration
inequality for CDFs. It implies the Glivenko-Cantelli theorem and is a more refined
finite-sample bound:

]P’(sgp |F(z) — F,(z)| > €) < 2exp(—2né?).

One of the very nice things about the finite-sample bound is that we can use this to
construct finite-sample confidence bands. Concretely, taking:

L(z) = max {ﬁn(x) — €n, O} ,

U(z) = min {ﬁn(:v) + €n, 1} ,

11 2
€, =4/ —log | — |,
Qnga

PVaz, Llz)<F(z) <Ux))>1—a.

where

we have that:

It is again worth pondering why or how it is that ULLNs work, i.e. why is it possible that
the empirical CDF is close to the true CDF for every possible 7 ULLNs and more generally
empirical process theory is at the heart of the more advanced statistical estimation results.

13.3 Estimating Statistical Functionals

We should first briefly remark on what exactly a functional is. We think of a function as a
map from a point in some input space to the reals, i.e.,

frre fz),

on the other hand a functional maps a function to a real number. A typical functional is the
value of the function at some point xy, i.e.

T(f): [ flxo),

A statistical functional typically refers to a function of the CDF. Some canonical examples:
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1. Mean: The mean can be thought of as a functional, i.e.:
w(F) = /x dF(x).
2. Variance: Similarly, the variance is a functional:

Var(F') = /(:1: — u(F))?* dF (z).

3. Linear Functionals: In general, we define linear functionals (like the mean) to be
functionals of the form:

T(F) = / r(z) dF(z),
for some function r. These are called linear because if we take U = aF + bG then,
T(U) =aT(F)+bT(G).

The mean is a linear functional but the variance is not.

13.3.1 The plug-in estimator

A natural estimator for a linear functional is to plug-in the empirical CDF and use the
resulting functional, i.e.:

T(F):=T(F,) = /r(a:) dE,(z) = 1 > r(Xy).

=1

Again the canonical example is estimating the mean of a distribution.
(W =T(F) := ! iX
n = T n — 7°

This principle can also sometimes be used to estimate non-linear functionals like the variance.

6% = /xz dF,(z) — (/g; dﬁn(x))2
_ %ixf_ (%ix)z

1< )
= - ;(Xl — )%
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We will conclude this lecture with two more canonical examples:
Skewness: The skewness of a RV is:
E(X —p)?® _ EX —p)

o’ (B(X — p)2)**

so we can see that we could use the plug-in principle separately on the numerator and
denominator and then further use the plug-in principle to estimate p. This leads to the
estimator:

L3 (X — ) |
(% Yo (X — ﬂ)2)3/2

K=

Correlation: The correlation between two RVs is a functional of the joint distribution of
the pair (X,Y). The correlation is:

E(X — pux)(Y — ,UY)

Ox0Oy
As an exercise show that the plug-in estimator is the sample correlation:

Yo (X — ux) (Vi — fuy) '
VY (Xi = ix )2/ (Vi — iy )?

p=

It is worth noting that in some sense all of these estimators are completely non-parametric,
i.e. there are no parametric assumptions about the underlying distribution being made in
order to derive estimators.



