
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 13: September 28
Lecturer: Siva Balakrishnan

13.1 Review and Outline

Last class we discussed:

• Consistency of the MLE

• The Fisher Information

• Asymptotic Normality of MLE

In today’s lecture we will discuss some non-parametric estimation problems and discuss the
plug-in method to estimate functionals. This is Chapter 7 of the Wasserman book. In the
next lecture we will consider methods for estimating standard errors of the plug-in estimator.

13.2 Estimating the CDF

Formally, the setting is that we observe X1, . . . , Xn ∼ F , and would like to estimate F .
Perhaps worth noting that we impose absolutely no restrictions on F . Further, there is no
notion of a (finite-dimensional) parameter that we can attempt to estimate in this context.

Some typical applications:

1. Estimating (many) interval probabilities: Suppose we observe a stochastic
quantity many times, and are then interested in estimating the probability P(a ≤
X ≤ b) for some fixed [a, b]. In this case we would just use the empirical counts, and
use the empirical variance to get some idea of the variability. We could even use the
CLT/Hoeffding’s inequality to obtain concentration bounds, and confidence intervals.

Suppose now I wanted to estimate this probability for many intervals: [a1, b1], [a2, b2], . . . , [ak, bk]
for some very large k, and I want simultaneous confidence intervals, i.e., I want ev-
ery confidence interval to cover the corresponding probability with probability at least
1−α. The naive way to do this would be to estimate each probability and do a union
bound. Wouldn’t it be nice if we could instead estimate the entire CDF reliably?
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2. The Kolmogorov-Smirnov test: This is only somewhat related to the estima-
tion question we focus on today, but one other important use of the CDF is to test
hypotheses about distributions, i.e. suppose I think my samples X1, . . . , Xn have a
N(0, 1) distribution. A natural way to test this hypothesis is by comparing the CDF
of my samples to the CDF of a N(0, 1) distribution. In order to be more rigorous
about the performance of such a test however, we need to understand a basic question:
suppose the samples were truly from a N(0, 1) distribution, how far would we expect
the sample CDF to be from the N(0, 1) CDF?

Our estimator for the CDF will just be the empirical CDF: the empirical CDF corresponds
to the pmf that puts mass 1/n at each data point Xi, i.e.:

F̂n(x) =

∑n
i=1 I(Xi ≤ x)

n
.

Let us try to investigate some basic properties of this estimator. Suppose we fix a value x:

1. Bias: The estimator we have proposed is unbiased, i.e.:

E(F̂n(x)) =

∑n
i=1 E(I(Xi ≤ x))

n
= P(X ≤ x).

2. Variance: The variance of the estimator is:

Var(F̂n(x)) =
P(X ≤ x)(1− P(X ≤ x))

n
.

3. MSE: The MSE at x is just the squared bias + variance, i.e.,

MSE =
P(X ≤ x)(1− P(X ≤ x))

n
→ 0,

as n→∞. From this we can conclude that for any fixed x our estimator converges in
probability, i.e. that:

P(|F̂n(x)− F (x)| ≥ ε)→ 0,

as n→∞.

There are two additional important results that we will not prove but are worth knowing:

1. Glivenko-Cantelli: The Glivenko-Cantelli theorem is essentially a uniform LLN (we
discussed these before briefly in the previous lecture). Precisely, it says that

sup
x
|F (x)− F̂n(x)| → 0,
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almost surely. We have not seen almost sure convergence before but note that it implies
convergence in probability. To emphasize, the previous result was a statement for a
fixed x. The Glivenko-Cantelli theorem assures us that the empirical CDF converges
to the true CDF uniformly, i.e. for every value x simultaneously.

2. DKW (Dvoretzky-Kiefer-Wolfowitz): The DKW inequality is a concentration
inequality for CDFs. It implies the Glivenko-Cantelli theorem and is a more refined
finite-sample bound:

P(sup
x
|F (x)− F̂n(x)| ≥ ε) ≤ 2 exp(−2nε2).

One of the very nice things about the finite-sample bound is that we can use this to
construct finite-sample confidence bands. Concretely, taking:

L(x) = max
{
F̂n(x)− εn, 0

}
,

U(x) = min
{
F̂n(x) + εn, 1

}
,

where

εn =

√
1

2n
log

(
2

α

)
,

we have that:

P (∀ x, L(x) ≤ F (x) ≤ U(x)) ≥ 1− α.

It is again worth pondering why or how it is that ULLNs work, i.e. why is it possible that
the empirical CDF is close to the true CDF for every possible x? ULLNs and more generally
empirical process theory is at the heart of the more advanced statistical estimation results.

13.3 Estimating Statistical Functionals

We should first briefly remark on what exactly a functional is. We think of a function as a
map from a point in some input space to the reals, i.e.,

f : x 7→ f(x),

on the other hand a functional maps a function to a real number. A typical functional is the
value of the function at some point x0, i.e.

T (f) : f 7→ f(x0),

A statistical functional typically refers to a function of the CDF. Some canonical examples:
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1. Mean: The mean can be thought of as a functional, i.e.:

µ(F ) =

∫
x dF (x).

2. Variance: Similarly, the variance is a functional:

Var(F ) =

∫
(x− µ(F ))2 dF (x).

3. Linear Functionals: In general, we define linear functionals (like the mean) to be
functionals of the form:

T (F ) =

∫
r(x) dF (x),

for some function r. These are called linear because if we take U = aF + bG then,

T (U) = aT (F ) + bT (G).

The mean is a linear functional but the variance is not.

13.3.1 The plug-in estimator

A natural estimator for a linear functional is to plug-in the empirical CDF and use the
resulting functional, i.e.:

T̂ (F ) := T (F̂n) =

∫
r(x) dF̂n(x) =

1

n

n∑
i=1

r(Xi).

Again the canonical example is estimating the mean of a distribution.

µ̂ = T̂ (F ) :=
1

n

n∑
i=1

Xi.

This principle can also sometimes be used to estimate non-linear functionals like the variance.

σ̂2 =

∫
x2 dF̂n(x)−

(∫
x dF̂n(x)

)2

=
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

=
1

n

n∑
i=1

(Xi − µ̂)2.
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We will conclude this lecture with two more canonical examples:

Skewness: The skewness of a RV is:

κ =
E(X − µ)3

σ3
=

E(X − µ)3

(E(X − µ)2)3/2
,

so we can see that we could use the plug-in principle separately on the numerator and
denominator and then further use the plug-in principle to estimate µ. This leads to the
estimator:

κ̂ =
1
n

∑n
i=1(Xi − µ̂)3(

1
n

∑n
i=1(Xi − µ̂)2

)3/2 .
Correlation: The correlation between two RVs is a functional of the joint distribution of
the pair (X, Y ). The correlation is:

ρ =
E(X − µX)(Y − µY )

σXσY
.

As an exercise show that the plug-in estimator is the sample correlation:

ρ̂ =

∑n
i=1(Xi − µ̂X)(Yi − µ̂Y )√∑n

i=1(Xi − µ̂X)2
√∑n

i=1(Yi − µ̂Y )2
.

It is worth noting that in some sense all of these estimators are completely non-parametric,
i.e. there are no parametric assumptions about the underlying distribution being made in
order to derive estimators.


