
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 12: September 26
Lecturer: Siva Balakrishnan

12.1 Review and Outline

Last class we discussed:

• The minimax risk of an estimator

• The Bayes risk of an estimator

• The Bayes rule with respect to a prior

• Connections between minimax and Bayes estimators

Today we are going to discuss in detail some properties of the MLE. Many of these results
are in Chapter 9.4-9.8 of the Wasserman book. In order to get the main ideas across while
still conveying some of the proof techniques we will be a bit non-rigorous in various places.
In particular, many of the results we state hold under regularity conditions, i.e. typically
they require that the space of possible parameters is compact, that the true parameter is in
the interior of the space of possible parameters and that the likelihood function is smooth.
Advanced mathematical statistics textbooks will be more rigorous about these conditions.

Finally, in this lecture we will also ignore computational aspects. The MLE in most cases
is not calculated analytically. Rather, we use an algorithm like gradient ascent to try to
maximize the likelihood. In some cases (for instance, when the likelihood is concave) we can
guarantee that this algorithm will in fact find a parameter sufficiently close to the MLE. In
general however computing the MLE can be intractable.

12.2 Consistency

The first important property of the MLE is that it is consistent under regularity condi-
tions. As a reminder: consistency means that the MLE converges in probability to the true
parameter.
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In order to establish this we first need to recall the definition of the KL divergence. For two
densities f, g we defined the KL divergence as:

D(f ||g) =

∫
x

f(x) log

(
f(x)

g(x)

)
dx.

For us, we will use this on parametric densities. In this case, two parameters θ1, θ2 will
induce the KL divergence D(fθ1||fθ2). Two properties of the KL divergence that we will use
are that the KL divergence is always positive and equal to 0 iff f = g (almost everywhere).

We say a statistical model is identifiable if we have that if θ1 6= θ2 then D(fθ1||fθ2) > 0. In
words, this condition implies that different parameter values induce different distributions.
We assume that the statistical model is identifiable in the sequel.

Let θ∗ denote the true (unknown) value of the parameter. Then we can see that maximizing
the log-likelihood is equivalent to maximizing the following function:

Mn(θ) =
1

n

n∑
i=1

log
fθ(Xi)

fθ∗(Xi)
,

since the term in the denominator is just a constant. We can see that by the LLN:

Mn(θ)→ Efθ∗ log
fθ(Xi)

fθ∗(Xi)
= −D(fθ∗||fθ).

Now, since the KL divergence is always positive, minimized when θ = θ∗, and uniquely
minimized at this point (by identifiability) we can argue that in probability the maximum
likelihood will be achieved at θ∗.

In order to be more rigorous we need that the convergence of Mn(θ) to −D(fθ∗ ||fθ) hold for
all possible values of the parameter θ. For a single θ this follows from the LLN; when we
need the convergence in probability to hold over the entire parameter space we need to derive
what are called uniform laws of large numbers (ULLNs). We have seen the techniques to do
this: usually some combination of Hoeffding’s inequality or Chebyshev’s inequality and the
union bound is used.

Let me first point out the main take away from this proof: for large sample sizes maxi-
mizing the likelihood is roughly equivalent to minimizing the KL divergence to
the true model.

The method-of-moments does not typically have such an interpretation so proving general
results about its consistency is much more difficult.

12.3 Fisher Information

The MLE is often asymptotically Gaussian. In order to express its variance we need to first
define what is called the Fisher information matrix.
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We first define the score function:

sθ(X) =
∂ log fθ(X)

∂θ
.

The score function at θ has mean zero when X ∼ fθ, i.e.,

Eθ [sθ(X)] = 0.

One can see this by differentiating the expression that 1 =
∫
θ
fθ(x)dx, with respect to θ.

This yields:

0 =

∫
θ

∂fθ(x)

∂θ
dx

=

∫
θ

∂ log fθ(x)

∂θ
fθ(x)dx

= Eθ [sθ(X)] .

One can also interpret maximum likelihood as approximately trying to satisfy this condition,
i.e., roughly the MLE θ̂ satisfies something like:

1

n

n∑
i=1

sθ̂(Xi) = 0,

which by the LLN is like trying to solve the equation:

Eθ∗sθ̂(X) = 0.

Under identifiability conditions this equation will be uniquely solved at θ̂ = θ∗.

The Fisher information is just the variance of the score function, i.e.:

I(θ) = Varθ (sθ(X)) = E
(
sθ(X)2

)
.

Under some mild regularity conditions the Fisher information can also be written as:

I(θ) = −Eθ
[
∂2

∂θ2
log fθ(X)

]
.

Let us prove this: differentiating the score equation we obtain that,

∂

∂θ
Eθ
[
∂

∂θ
log fθ(X)

]
= 0,∫

X

[
∂

∂θ

(
fθ(X)

∂

∂θ
log fθ(X)

)]
dX = 0,
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which after some algebra yields the expression that:

Eθ
[
∂2

∂θ2
log fθ(X)

]
+ Eθ

[
∂

∂θ
log fθ(X)

]2
= 0.

This gives us the desired result.

So effectively, the Fisher information measures the variance of the score function, but also
the Hessian or the curvature of the log-likelihood.

One can intuitively imagine that the curvature of the log-likelihood is related to how well we
can estimate the unknown parameter. Roughly, if the log-likelihood is very flat then even if
our estimate θ̂ is very close in likelihood it need not be the case that θ̂ is close to θ∗. We
will try to further formalize this intuition in the next section.

12.4 Asymptotic Normality of the MLE

Another important property of the MLE is that under regularity conditions:√
nI(θ∗)(θ̂ − θ∗)

converges in distribution to a standard normal. We have previously seen how one can use
this type of convergence in distribution to construct (asymptotic) confidence intervals. A
simple argument will also show that this convergence implies that the MSE behaves like:

E(θ̂ − θ∗)2 → 1

nI(θ∗)
,

so we can see that the Fisher information plays a crucial role in determining the quality of
the MLE.

We once again have the problem that the confidence intervals above are not constructive
since the true parameter θ∗ is not known. Under regularity conditions we also have that:√

nI(θ̂)(θ̂ − θ∗)→ N(0, 1).

There are also some cases in which you cannot analytically compute the Fisher information.
In these cases often the observed information is useful:

In(θ̂) = − 1

n

n∑
i=1

[
∂2

∂θ2
log fθ(Xi)|θ=θ̂

]
,

Under regularity conditions it will also be the case that:√
nIn(θ̂)(θ̂ − θ∗)→ N(0, 1).
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Let us try to roughly argue that the asymptotic normality makes sense. Lets define the
log-likelihood function as

`(θ) = logL(θ|X1, . . . , Xn).

Since θ̂ maximizes the log-likelihood we have that:

0 = `′(θ̂) ≈ `′(θ∗) + `′′(θ∗)(θ̂ − θ∗),

by a Taylor expansion. Re-arranging this we get that:

√
n(θ̂ − θ∗) ≈

1√
n
`′(θ∗)

− 1
n
`′′(θ∗)

.

We can analyze the numerator and denominator separately: first the denominator,

− 1

n
`′′(θ∗) = − 1

n

n∑
i=1

∂2

∂θ2
log fθ(Xi)|θ=θ∗ → I(θ∗).

Now the numerator:

1√
n
`′(θ∗) =

1√
n

n∑
i=1

∂

∂θ
log fθ(Xi)|θ=θ∗

=
1√
n

n∑
i=1

sθ∗(Xi).

This is a sum of i.i.d. random variables with mean zero, and variance I(θ∗) so by the CLT
we can conclude that:

1√
n
`′(θ∗)→ N(0, I(θ∗))

in distribution. Putting these two pieces together we obtain the desired result.

At a high-level from a statistical point of view the MLE is a great estimator when appropriate
regularity conditions hold: it is equivariant, it is consistent, and asymptotically normal with
a variance that we can compute. Often it will also turn out that the MLE is “optimal” in
the sense that amongst all unbiased estimators with an asymptotic Gaussian limit it has the
lowest variance. We will delve into this in a future lecture.

Much of modern statistical theory tries to understand cases when: (1) the regularity con-
ditions fail, (2) the asymptotic theory above is not valid (a common example of this is
high-dimensional statistics, where the number of parameters greatly exceeds the number of
data points) (3) the MLE is intractable to compute (in for instance graphical models and
latent variable models).


