
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 10: September 21
Lecturer: Siva Balakrishnan

10.1 Review and Outline

Last class we discussed:

• Method-of-moments

• Maximum Likelihood Estimation

• (Briefly) Bayes Estimators

In this lecture we will go over Bayes estimators in more detail and then discuss some methods
to evaluate estimators. This is the second half of Chapter 7 of C&B.

10.2 Bayes Estimators

The third general method to derive estimators is a bit different philosophically from the
first two. At a high-level we need to understand the Bayesian approach (we will of course
stay clear of any philosophical questions): in our approaches so far (so-called “frequentist”
approaches) we assumed that there was a fixed but unknown true parameter, and that we
observed samples drawn i.i.d from the population (whose density/mass function/distribution
was indexed by the unknown parameter).

In the Bayesian approach we consider the parameter θ to be random. We have a prior belief
of the distribution of the parameter, which we update after seeing the samples X1, . . . , Xn.
We update our belief using Bayes rule and the updated distribution is known as the posterior
distribution.

We denote the prior distribution by π(θ), and the posterior distribution as π(θ|X1, . . . , Xn).
Using Bayes’ rule we have that:

π(θ|X1, . . . , Xn) =
π(θ)L(θ|X1, . . . , Xn)∫
θ
π(θ)L(θ|X1, . . . , Xn)

.

The posterior distribution is a distribution over the possible parameter values. In this lecture
we are focusing on point estimation so one common candidate is the posterior mean (i.e. the
expected value of the posterior distribution).
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Ignoring any philosophical questions, one can view this methodology as a way to generate
candidate point estimators, by specifying reasonable prior distributions. In practice how-
ever this calculation is hard to do analytically, so we often end up specifying priors out of
convenience rather than any real prior belief. Particularly, a convenient choice of prior dis-
tribution is one for which the posterior distribution belongs to the same family as the prior
distribution: such priors are called conjugate priors.

Example 1: Binomial Bayes estimator: Suppose X1, . . . , Xn ∼ Ber(p). We will first need
to define the Beta distribution: a RV has a Beta distribution with parameters α and β if its
density on [0, 1] is

f(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1.

For us it will be sufficient to ignore the normalizing part and just remember that the Beta
density:

f(p) ∝ pα−1(1− p)β−1.

The mean of the Beta distribution is: α/(α + β).

Let us denote

X̄ =
1

n

n∑
i=1

Xi.

There are two candidate priors we will consider:

1. The flat/uninformative prior: π(p) = 1 for 0 ≤ p ≤ 1. In this case, the posterior
density is:

f(p|X1, . . . , Xn) ∝ pnX̄(1− p)n(1−X̄)

= p(nX̄+1)−1(1− p)(n(1−X̄)+1)−1.

This is just a Beta(nX̄ + 1, n(1− X̄) + 1) distribution. So our estimate (the posterior
mean) would be:

p̂ =
nX̄ + 1

n+ 2

=
n

n+ 2
X̄ +

2

n+ 2

1

2

= wX̄ + (1− w)
1

2
,

which can be viewed as a convex combination of the MLE and the prior mean 1/2.
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2. The other common prior is the one that is conjugate to the bernoulli likelihood, i.e.
the Beta prior. A similar calculation as the one above will show that if use π(p) ∼
Beta(α, β), then the posterior distribution will also be a Beta distribution:

f(p|X1, . . . , Xn) ∼ Beta(α + nX̄, β + n(1− X̄)),

and our Bayes estimator would be:

p̂ =
α + nX̄

α + β + n
.

Example 2: Gaussian Bayes estimator: Here we suppose that our prior belief is that the
parameter has distribution N(µ, τ 2) and we observe X1, . . . , Xn drawn from N(θ, σ2). We
assume that σ2, µ, τ 2 are all known.

A fairly involved calculation in this case (see for instance Problem 1 of Chapter 11 of Wasser-
man) will show that the posterior distribution is also a Gaussian with parameters:

µ̂ =
nτ 2

σ2 + nτ 2

(
1

n

n∑
i=1

Xi

)
+

σ2

σ2 + nτ 2
(µ)

σ̂2 =
σ2τ 2

σ2 + nτ 2
,

which suggests the point estimate:

µ̂ =
nτ 2

σ2 + nτ 2

(
1

n

n∑
i=1

Xi

)
+

σ2

σ2 + nτ 2
(µ) .

Which can once again be seen as a convex combination of our prior belief and the MLE, i.e.:

µ̂ = w

(
1

n

n∑
i=1

Xi

)
+ (1− w)µ,

for some 0 ≤ w ≤ 1.

10.3 Evaluating Estimators

We have already discussed the MSE and the bias-variance decomposition. Today we will
discuss decision theory more broadly.

The central idea in decision theory is that we want to minimize our expected loss.
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Let us first try to understand the decision theoretic setup. We observe data X, where
X ∼ fθ, with θ ∈ Θ, and we make a decision, i.e. we select an action a.

In point estimation, the decision is just our guess of the parameter. In hypothesis testing
situations our decision will instead be which of the hypotheses we believe to be true. Once
we take an action we suffer a loss. The loss function in point estimation is roughly something
that is large if a is far from θ and small if our guess is good, i.e., if a is close to θ.

Some very common loss functions are:

1. Squared loss: L(a, θ) = (a− θ)2.

2. Absolute loss: L(a, θ) = |a− θ|.

There are however many other loss functions that we will encounter frequently. For instance,
we often consider losses like:

L(a, θ) =
(a− θ)2

|θ|+ 1
,

which penalizes errors in estimation more for small values of θ than for large values. We can
similarly design a loss function that penalizes errors more strongly for large values of θ.

Another important point is that there are cases when we do not really care about estimating
the parameter well but rather just the distribution fθ. This is true when we care about
prediction in regression or in density estimation. In this case we could define the loss between
θ and a in terms of the distributions fθ and fa. One canonical example:

Kullback-Leibler loss:

L(a, θ) = KL(fθ, fa) = EX∼fθ log

(
fθ(X)

fa(X)

)
.

Once we have a loss function, and an estimator, we can assess the estimator via its expected
loss. This expected loss is called the risk of the estimator. Suppose we consider an estimator
θ̂(X). Then we define:

R(θ, θ̂(X)) = EθL(θ̂(X), θ).

In general, we do not a-priori know anything about the value of θ so we would like estimators
with low risk for all parameters θ ∈ Θ. So ideally, we would like to find an estimator θ̂ such
that for any other estimator θ′ we have that:

R(θ, θ̂(X)) ≤ R(θ, θ′)

for all values θ. Such estimators will most often not exist – why not?
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Example: Suppose X ∼ N(θ, 1), and we care about estimating θ in MSE. Consider two
estimators: θ̂ = X and θ̂ = 0. The risk of X is: E(X − θ)2 = 1, while the risk of 0 is
Eθ2 = θ2. So when θ < 1, 0 is a better estimator than the estimator X. Neither estimator
dominates the other.

Example: Let us consider the Bernoulli estimation problem: two natural estimators are
the MLE:

p̂1 =
1

n

n∑
i=1

Xi,

and the Bayes estimator we defined previously:

p̂2 =

∑n
i=1Xi + α

n+ α + β
,

for some values α and β that we will specify soon. Again, suppose we consider the squared
loss:

R(p, p̂1) =
p(1− p)

n
.

R(p, p̂2) = Var

(∑n
i=1Xi + α

n+ α + β

)
+

(
E
∑n

i=1Xi + α

n+ α + β
− p
)2

.

In the second estimator if we choose α = β =
√
n/4 we obtain that the risk is constant as a

function of p, i.e.

R(p, p̂2) =
n

4(n+
√
n)2

.

We can compare these two estimators’ risk functions but once again we see that neither
estimator dominates the other. In such cases, we need other ways to compare estimators
and to find “best” estimators.

A lot of statistical theory was developed from this decision theoretic starting point. At a
high-level there are several different paradigms and ideas:

1. The notion of admissibility: With our decision theoretic mechanism in place we could
attempt to weed out the really useless estimators. Particularly, it seems natural to
disregard an estimator θ̂1 if there is another estimator θ̂2 such that,

R(θ, θ̂2) ≤ R(θ, θ̂1),

for every θ ∈ Θ, and

R(θ, θ̂2) < R(θ, θ̂1),

for some θ ∈ Θ. Estimators like θ1 are called inadmissible estimators. As one might
expect there are often many admissible estimators so we need other ways to narrow
our search further.
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2. Minimax risk: The minimax estimator θ̂ is one that minimizes the worst-case risk,i.e.,
it is one that satisfies:

sup
θ∈Θ

R(θ, θ̂(X)) = min
θ′

max
θ∈Θ

EθL(θ, θ′(X)).

More generally however the minimax risk idea suggests comparing two estimators on
the basis of their worst-case risk. For various reasons this is one of the dominant
paradigms for evaluating estimators. This is because for many problems of interest we
can actually find the minimax estimator (or at least one that achieves the minimax
risk upto constants).

3. Bayes risk: The Bayes risk of an estimator is its risk averaged with respect to a prior,
i.e., for some prior π(θ):

Rπ(θ̂) = Eθ∼πR(θ, θ̂(X)).

The Bayes risk (similar to the worst-case risk) of an estimator is just a number and
thus it is easy to compare two estimators. A natural estimator is one that minimizes
the Bayes risk, and this is sometimes called the Bayes estimator. This might seem as
intractable as finding an optimal estimator by any other metric but it turns out that
we can simplify the problem a bit.

Bayes Estimator: Suppose that θ ∼ π and X ∼ fθ. Observe that the above
is defining the conditional distribution of X: we denote the marginal distribution as
m(X). Then the Bayes risk of an estimator is:∫

θ

R(θ, θ̂(X))π(θ)dθ =

∫
θ

[∫
X

L(θ, θ̂(X))fθ(X)dX

]
π(θ)dθ

=

∫
X

[∫
θ

L(θ, θ̂)π(θ|X)dθ

]
m(X)dX.

Now, the Bayes estimator just minimizes this expression, so we can see that for every
X our estimator is given by:

θ̂(X) = arg min
θ′

∫
θ

L(θ, θ′(X))π(θ|X)dθ.

The term on the RHS is called the posterior expected loss. So the Bayes estimator
is one that minimizes the posterior expected loss. A simple but important special
case of this is that if L is the squared loss then the Bayes estimator is a conditional
expectation, i.e.,

θ̂(X) = E[θ|X].
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As a point of comparison, the max-risk does not involve the choice of an arbitrary prior so
in that sense has some advantages over the Bayes risk.

Example: Let us revisit the two Bernoulli estimators from the standpoint of maximum
risk and Bayes risk. Suppose we take the uniform prior, then:

Rπ(p̂1) =

∫
p

p(1− p)
n

dp =
1

6n
,

Rπ(p̂2) =
n

4(n+
√
n)2

,

so for large n the MLE has smaller Bayes risk.

On the other hand the estimator p̂2 always has lower maximum risk. In the next lecture we
will show that this estimator is actually minimax optimal.


