
36-700: Probability and Mathematical Statistics I Fall 2016

Lecture 1: August 29
Lecturer: Siva Balakrishnan

1.1 Basic Information

• Course Webpage: http://www.stat.cmu.edu/~siva/700/main.html

• Piazza: piazza.com/cmu/fall2016/36700

• Teaching Assistant: Ilmun Kim, Email: ilmunk@andrew.cmu.edu.

• Office Hours:

– Siva Balakrishnan: BH 132K, Wednesday 1:30pm-2:30pm.

1.2 Syllabus Highlights

1.2.1 Textbooks

• Textbooks: All of Statistics by Larry Wasserman and Statistical Inference by Casella
and Berger.

1.2.2 Grading

• 25%: Homework (almost weekly)

• 20%: Mid-term 1

• 20%: Mid-term 2

• 25%: Final

• 10%: Class Participation: In-class exercises, attendance and contribution to discus-
sion.
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1.2.3 Reading and Class Notes

Once blackboard is up and running I will post lecture notes, usually the night before the
lecture. You do not have to print these out/bring them to lecture. They are meant mostly
for you to have something to review later on. The lecture notes will also contain pointers to
sections from the textbooks.

1.2.4 Working in Groups

You should feel free to collaborate on the homework, but please write-up your final solutions
on your own.

1.3 Course Overview

Broadly, this course is focussed on mathematical statistics. We will most likely cover the
following topics:

1. Basics of probability: expectations, conditional expectations, probability distributions,
moments, tranformations of random variables, moment generating functions.

2. Concentration inequalities: Markov, Chebyshev, Hoeffding inequalities, and their uses
in statistics.

3. Central limit theorem, delta method.

4. Point estimation: likelihood, MLE, Fisher Information, Cramer-Rao bound, decision
theory.

5. Hypothesis testing: mathematical formulation, likelihood ratio test, Wald and χ2 tests,
goodness-of-fit, permutation tests, bootstrap.

6. Advanced topics: Exponential families, Causal inference, non-parametrics and topics
in machine learning.

1.4 Introduction

The first part of our adventure is a highly selective review of probability theory, focusing
especially on things that are most useful in statistics.
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1.4.1 Sample spaces and events

A typical way to go about defining things is to suppose that we conduct an experiment. An
experiment is a measurement of a random (stochastic) process.

Our measurements take values in some set Ω: this is the sample space. The sample space
effectively defines all possible outcomes of our measurement.

Examples:

• Suppose I toss a coin: in this case the sample space Ω = {H,T}.

• If I measure the reaction time to some stimulus the sample space Ω = (0,∞).

• Suppose I toss a coin twice: what is the sample space?

An event is some subset of A ⊆ Ω, i.e., it is a subset of possible outcomes of our experiment.
We say that an event A occurs if the outcome of our experiment lies in the set A.

1.4.1.1 A quick aside on set-theoretic notation

Here is some basic notation for set operations.

• (Subset) A ⊆ B means that all elements in A are also in B.

• (Complement) Ac: elements that are not in A.

• (Empty set) Ωc = ∅.

• (Union) A ∪B: elements that are either in A or in B, or both.

• (Intersection) A ∩ B: elements that are both in A and B. Sometimes we use AB for
brevity.

• (Set difference) A\B = A ∩ (Bc): elements that are in A but not in B.

• (Symmetric difference) A4B = (A\B)∪ (B\A): elements that are in A or B, but not
both.

• (Cardinality) |A| denotes the number of elements in A.

Exercise: Prove that (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.
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1.4.2 Probability Distributions

A probability distribution is a mapping from events to real numbers that satisfies certain
axioms. We denote this mapping by P : A 7→ R. The axioms are:

1. Non-negativity: P(A) ≥ 0, ∀ A ⊆ Ω.

2. Unity of Ω: P(Ω) = 1.

3. Countable additivity: For a collection A1, A2, . . . , of disjoint sets we must have
that,

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

We can use these axioms to show several useful and intuitive properties of probability dis-
tributions:

• P(∅) = 0.

• A ⊂ B ⇒ P(A) ≤ P(B).

• 0 ≤ P(A) ≤ 1.

• P(Ac) = 1− P(A).

• P(A ∪B) = P(A) + P(B)− P(A ∩B).

All of these properties can be understood via a Venn diagram.

Example: Suppose I toss a fair coin twice, and denote by H1 the event that the first coin
lands heads, and H2 the event that the second coin lands heads. Calculate P(H1 ∪H2).

We can use the above formula:

P(H1 ∪H2) = P(H1) + P(H2)− P(H1 ∩H2)

= 0.5 + 0.5− 0.25 = 0.75.

Exercise: Derive an analogous formula for P(∪ni=1Ai).
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1.4.3 Counting and the uniform distribution on discrete sets

Suppose we toss a die twice. There are 36 possible outcomes: Ω = {(t1, t2) : t1, t2 =
1, 2, 3, 4, 5, 6}. If the die is fair then each outcome is equally likely. This is an example of a
uniform distribution on a discrete set.

The general rule of calculating probability of an event under the uniform distribution in
finite sample space is

P(A) =
|A|
|Ω|

.

For example, let A be the event that the sum of two tosses being less than five. Then
A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}. Thus P(A) = 6/36 = 1/6.

Example: There are two black balls and three white balls in a bag. Two balls are randomly
drawn, without replacement, from the bag. What is the probability of the two balls have
different color? What is the probability if the balls are drawn with replacement?

When drawing without replacement, the sample space Ω has cardinality |Ω| = 5 × 4 = 20,
and the event A has cardinality |A| = 2 × 3 + 3 × 2 = 12 (first white and second black, or
first black second white). So P(A) = 12/20 = 0.6.

When drawing with replacement, the sample space Ω has cardinality 5× 5 = 25, and A still
has cardinality 12. Then P(A) = 12/25 = 0.48.

More generally, calculating probabilities under the uniform distribution on a discrete set is
based on counting.

1.5 Conditional probability

Definition 1.1 (Conditional probability) If P(B) > 0, the conditional probability of A
given B is

P(A|B) :=
P(A ∩B)

P(B)
. (1.1)

Example: Consider tossing a fair die. Let A be the event that the result is an odd number,
and B = {1, 2, 3}. Then P (A|B) = 2/3, and P (A) = 1/2. In this example A and B are not
independent.

Remark: In general P(A|B) 6= P(B|A).

The chain rule: A simple re-writing of the above expression yields the so-called chain rule:

P(A ∩B) = P(B)P(A|B) = P(A)P(B|A).
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More generally,

P(A1 ∩ A2 ∩ A3 . . .) = P(A1)P(A2|A1)P(A3|A2, A1) . . . .

1.6 Independence of Events

Independence roughly asks the question of whether one event provides any information about
another. For example, if we toss a fair coin twice, let Hi be the event that the ith toss is
head (i = 1, 2), then intuitively knowing if the event H1 occurred or not does not provide
any information about H2. The formal definition of independence is

Definition 1.2 (Independence) Two events A and B are called independent if

P(A ∩B) = P(A)P(B) . (1.2)

A set of events Aj (j ∈ I) are called mutually independent if

P

(⋂
j∈J

Aj

)
=
∏
j∈J

P(Aj) ,

for any finite subset J of I.

Conditional probability gives another interpretation of independence: A and B are indepen-
dent if the unconditional probability is the same as the conditional probability.

Example: We can formally verify the coin toss example: P (A1) = P (A2) = 1/2, and
P (A1A2) = 1/4.

Example: To see a less obvious example, consider tossing a fair die once. Let A =
{1, 2, 3, 4}, B = {2, 4, 6}. Then AB = {2, 4}. P(A) = 2/3, P(B) = 1/2, and P(AB) = 1/3 =
P(A)P(B). Then we conclude that A and B are independent.

Here are some simple facts about independence.

1. Ω is independent of any other event. The same holds for ∅.

2. If A, B are disjoint, both having positive probability, then A and B cannot be inde-
pendent.

3. If A and B are independent, then Ac and B are also independent.

When combined with other properties of probability, independence can sometimes allow very
easy calculation of the probability of certain events.
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Example: Consider tossing a fair coin, what is the probability of at least one head in the
first 10 tosses?

Let A be the event of at least one head in 10 tosses. Then Ac is the event of no heads in 10
tosses, or equivalently, all 10 tosses being tail. Therefore P(A) = 1− P(Ac) = 1− 2−10.

1.7 Bayes’ Rule

Roughly Bayes rule allows us to calculate the probability of B|A from the probability of
A|B. As a preliminary we need the following:

Theorem 1.3 (Law of total probability) Let A1, ..., Ak be a partition of Ω. The for
any B,

P(B) =
k∑

i=1

P(B|Ai)P(Ai).

Proof: The claim follows by observing that Ai ∩B (i = 1, ..., k) forms a partition of B, and
P(Ai ∩B) = P(B|Ai)P(Ai).

The law of total probability is a combination of additivity and conditional probability. It
leads to the very useful Bayes’ theorem.

Theorem 1.4 (Bayes’ Rule) Let A1, ..., Ak be a partition of Ω. Then

P(Ai|B) =
P(B|Ai)P(Ai)∑k
i=1 P(B|Ai)P(Ai)

.

The proof is simple. The numerator is just P(AiB) and the denominator is P(B).

This is useful when P(Ai|B) is not obvious to calculate but P(B|Ai) and P(Ai) are easy to
find. A typical application is classification.

Example: Suppose there are three types of emails: A1 =“spam”, A2 =“low priority”,
A3=“high priority”. Based on previous experience, P(A1) = 0.85, P(A2) = 0.1, P(A3) =
0.05. Let B be the event that an email contains the word “free”, then P(B|A1) = 0.9,
P(B|A2) = 0.1, P(B|A3) = 0.1. Now a new coming email contains the word “free”, what is
the probability that it is spam?

Answer:

P(A1|B) =
P(B|A1)P(A1)

P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3)

=
0.85× 0.9

0.85× 0.9 + 0.1× 0.1 + 0.05× 0.1
≈ 0.98 .


