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Recap: Soft-Margin SVM
I To overcome problems with the Hard-Margin SVM (can be

unstable, data may not be linearly separable) we introduced
slack variables to allow points to “violate the margin”.

MaximizeM,—,—0,‘ M

subject to
pÿ

j=1
—2

j = 1, Ái Ø 0,
nÿ

i=1
Ái Æ C

yi(—0 + xT
i —) Ø M(1 ≠ Ái)

I When we solve this program the value of the slack variables
tells us where the point is:

I The tuning parameter C is critical. Increasing C, usually
increases bias and decreases variance. We typically choose it
by cross-validation. 2
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Recap: The parameter C
I One way to think about C is to note that it is an upper bound

on the number of training errors.
I If we want to understand its e�ect on bias and variance we

should recall:
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Recap: Kernels

I SVMs give us a way to obtain a linear classifier with a large
margin. Suppose we want a non-linear classifier.

I The usual answer is to use feature expansions, i.e. we take
our features and concatenate new features which are
combinations of existing features.

�((balance, income)) = (b, i, b ◊ i, b2, i2).

I A linear classifier in the expanded feature space is a non-linear
classifier in the original space.

I Can be computationally very annoying – we have to create,
store and manipulate these much (much) larger feature
vectors.
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Recap: Kernels

I If the optimal hyper-plane was a linear combination of our
data-points (it always is):

‚— =
nÿ

i=1
–ixi,

then SVMs could be written only in terms of inner products
xT

i xj for the training data (and of course the labels).
I To obtain the SVM classifier (after feature expansion) we do

not need to store the big feature vectors, we just need to be
able to compute their inner products quickly, i.e. we need
some way of computing �(x)T �(xÕ) for pairs of training
examples.
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Recap: Kernels
I For many interesting, non-linear kernels, we can compute

�(x)T �(xÕ) very easily using a kernel function:
K(x, xÕ) = �(x)T �(xÕ).

I For example, suppose our original data is 2 dimensional, if we
choose a quadratic feature map (so we can learn quadratic
decision boundaries):

�(x) = (1,
Ô

2x1,
Ô

2x2, x2
1, x2

2,
Ô

2x1x2).
Instead of computing �(x)T �(xÕ) by this feature expansion
we can see that this just corresponds to:

K(x, xÕ) = (1 + xT xÕ)2.

I For higher-order polynomials we use the polynomial kernel:
K(x, xÕ) = (1 + xT xÕ)p.

Another popular kernel is the Radial Basis Function kernel:
K(x, xÕ) = exp(≠“Îx ≠ xÕÎ2

2).
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Recap: Kernels Main Points

I We can make linear classifiers non-linear by feature expansion.
I Many classifiers only need inner products between the training

examples.
I We can often compute inner-products between the feature

expanded training examples directly using kernels.
I This gives us a way to quickly “non-linearize” (kernelize)

classifiers without having to carefully craft feature expansions.
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Recap: How do we use kernel SVMs?

I When we run a kernel SVM package (e1071) the coe�cients
it returns to us are now —0 and –i, and our classification
function takes the form:

‚f(x) = —0 +
nÿ

i=1
–iK(xi, x).

I To classify a new point:
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SVM: a di�erent perspective
There is another important way of thinking about the linear SVM.
It turns out that we can re-write the optimization problem (its a
bit of work) as solving:

min
—

nÿ

i=1
(1 ≠ yif(xi))+ + ⁄

2 Î—Î2
2

This is like replacing 0-1 loss with a hinge function and adding a
ridge penalty to keep things regularized!
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Empirical risk minimization
This general pattern:

1. We want to minimize:

E1{Y ”= f(X)}

2. And so we actually try to minimize its empirical version:

1
n

nÿ

i=1
1{yi ”= f(xi)}

3. But we can’t even do that for classification. So we introduce
a nicer loss L and minimize

1
n

nÿ

i=1
L(yi, f(xi))

The first two steps are known as empirical risk minimization. The
last step almost always follows for classification.
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Empirical risk minimization

I What do you observe about all these losses?
I Why is this a nice thing?
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Multiclass SVM

I Unlike logistic regression and LDA there is no particularly
natural way to take the (binary) SVM and use it in multi-class
settings.

I Two popular methods are:
1. One-versus-all classification: Here we fit K di�erent SVMs

{(‚—01, ‚—1), . . . , (‚—0K , ‚—K)} by comparing each class to all the
other classes.
To finally classify a point we use:

‚f(x) = arg max
k

‚—0k + ‚—T
k x.

2. One-versus-one classification: Here we fit
!K

2
"

di�erent SVMs,
by comparing each class with every other class.
To classify a new test example: we classify it according to each
of the classifers and pick the class that is chosen most often.
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Overview: Tree-based methods
Tree-based based methods for predicting y from a feature vector
x œ Rp divide up the feature space into rectangles, and then fit a
very simple model in each rectangle. This works both when y is
discrete and continuous, i.e., both for classification and regression
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(ISL Figure 8.7)

This is a big shift from thinking about linear-style models! 13
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This gives a rule that is easy to understand, easy to explain, and
easy to implement!

No more coe�cients to interpret!
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Classification trees

The classification tree can be thought of as defining m regions
(rectangles) R1, . . . Rm, each corresponding to a leaf of the tree

We assign each Rj a class label cj œ {1, . . . K}. We then classify a
new point x œ Rp by

‚f tree(x) =
mÿ

j=1
cj · 1{x œ Rj} = cj if x œ Rj

15



‚f tree(x) =
mÿ

j=1
cj · 1{x œ Rj}

Finding out which region a given point x belongs to is easy since
the regions Rj are defined by a tree—we just scan down the tree.
Otherwise, it would be a lot harder (need to look at each region)

16



Estimated class probabilities
Note that each region Rj contains some subset of the training
data (xi, yi), i = 1, . . . n, say, nj points.

We have been predicting class cj using the most common class
among points in Rj .

For each class k, we can also estimate the probability that a point
has that class, given that it falls in Rj , P(C = k|X œ Rj), by

‚pk(Rj) = 1
nj

ÿ

xiœRj

1{yi = k}

the proportion of points in the region that are of class k.

We can even think of our predicted class as

cj = argmax
k=1,...K

‚pk(Rj)

17
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How to build trees?

There are two main issues to consider in building a tree:
1. How to choose the splits?

2. How big to grow the tree?

The CART Algorithm:

1. Choose splits greedily for best improvement at each step,
starting from the root.

2. Grow the tree very deep to avoid getting stuck locally

3. Prune the tree back to a reasonable size to reduce variance.

18
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Recall that in a region Rm, the proportion of points in class k is

‚pk(Rm) = 1
nm

ÿ

xiœRm

1{yi = k}.

The CART algorithm begins by considering splitting on variable j
and split point s, and defines the regions

R1 = {X œ Rp : Xj Æ s}, R2 = {X œ Rp : Xj > s}

We then greedily chooses j, s by minimizing the misclassification
error

argmin
j,s

1
nR1

#
1 ≠ ‚pc1(R1)

$
+ nR2

#
1 ≠ ‚pc2(R2)

$2

Here c1 = argmaxk=1,...K ‚pk(R1) is the most common class in R1,
and c2 = argmaxk=1,...K ‚pk(R2) is the most common class in R2
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We now repeat this within each of the newly defined regions
R1, R2. Again consider all variables and split points for each of
R1, R2, greedily choosing the biggest improvement in
misclassification error.
How do we find the best split s?
Aren’t there infinitely many to consider?
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Continuing on in this manner, we
will get a big tree T0. Its leaves
define regions R1, . . . Rm. We
then prune this tree, meaning that
we collapse some of its leaves into
the parent nodes

How should we decide how much to prune a tree?

What is weird about applying this here?

21
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For any tree T , let |T | denote its
number of leaves. We define

C–(T ) =
|T |ÿ

j=1
nRj

#
1≠‚pcj (Rj)

$
+–|T |

We seek the tree T ™ T0 that minimizes C–(T ). It turns out that
this can be done by pruning the weakest leaf one at a time.

Note that – is a tuning parameter, and a larger – yields a smaller
tree. CART picks – by 5- or 10-fold cross-validation

22
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Example: simple classification tree

Example: n = 500, p = 2, and K = 2. We ran CART:
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In R, can use rpart or tree.
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Example: spam data

Example: n = 4601 emails, of which 1813 are considered spam.
For each email we have p = 58 attributes.

The first 54 features measure the frequencies of 54 key words or
characters (e.g., “free”, “need”, “$”). The last 3 measure

I the average length of uninterrupted sequences of capitals;
I the length of the longest uninterrupted sequence of capitals;
I the sum of lengths of uninterrupted sequences of capitals

(Data from ESL section 9.2.5)
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Cross-validation error curve for the spam data (from ESL page
314):

25
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Tree of size 17, chosen by cross-validation (from ESL page 315):

Note: The leaf annotations are a bit di�erent here. 26
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Other impurity measures
We used misclassification error as a measure of the impurity of
region Rj ,

1 ≠ ‚pcj (Rj)
But there are other useful measures too: the Gini index:

Kÿ

k=1
‚pk(Rj)

#
1 ≠ ‚pk(Rj)

$
,

and the cross-entropy or deviance:

≠
Kÿ

k=1
‚pk(Rj) log

)
‚pk(Rj)

*
.

Using these measures instead of misclassification error is
sometimes preferable because they are more sensitive to changes in
class probabilities.

27

err

if mis dassais
0 then two purenodes
multinomial

I 23 4 5



4 U 4 4
3334 44444

traction
in frain

fr in
frying

1 may p
class k



Other impurity measures
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Regression trees
Suppose that now we want to predict a continuous outcome
instead of a class label. Essentially, everything follows as before,
but now we just fit a constant inside each rectangle

29



The estimated regression function has the form

‚f tree(x) =
mÿ

j=1
cj · 1{x œ Rj} = cj such that x œ Rj

just as it did with classification. The quantities cj are no longer
predicted classes, but instead they are real numbers: the average
response within each region:

cj = 1
nj

ÿ

xiœRj

yi

The main di�erence in building the tree is that we use squared
error loss instead of misclassification error (or Gini index or
deviance) to decide which region to split.

30



Categorical predictors

I If a categorical predictor takes on q di�erent values then how
many splits do we have to consider?

31
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Trees provide a good balance

Model
assumptions?

Estimated
probabilities? Interpretable? Flexible?

LDA Yes Yes Yes No
LR Yes Yes Yes No

k-NN No A bit No Yes
Trees No Yes Yes Somewhat

32
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How well do trees predict?

Trees seem to have a lot of things going in the favor. So how is
their predictive ability?

Unfortunately, the answer is not great.

Trees tend to su�er from high variance because they are quite
unstable: a small change in the observed data can lead to a
dramatically di�erent sequence of splits, and hence a di�erent
prediction.

This instability comes from their greedy nature; once a split is
made, it is permanent and can never be “unmade” further down in
the tree

However, we will see that trees form the building blocks for some
very powerful predictive methods.
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