
Classification: Generative Models (Näıve Bayes
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Recap: Linear Discriminant Analysis

I For generative classifiers:
I We estimate (prior) fik := P(Y = k) and

fk(x) = P(X = x|Y = k).

I We classify by:

‚f(x) =

I For LDA we model:

fk ≥

I For QDA we model:

fk ≥
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Recap: Decision Boundaries in LDA

I By some algebra we saw that we could write the LDA decision
rule as:

‚f(x) =

I This leads to a picture like below:
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Recap: Estimation in LDA

I We need to estimate the means for each class, and a single
covariance matrix (common to all the classes).

I We do this via maximum likelihood (with minor adjustments)
on the training data:

‚µk =
‚fik =
‚� =

I Once we have estimated these we simply plug them in to find
the decision rule we actually use:

‚f(x) =

4

nitini yi k
X i

Fk EfEyEf
i ti ixxiyy

arggnaxITog
I E IteIITunn
pinE'n



Recap: The Mahalanobis Distance and LDA

I Suppose that the classes were balanced, i.e. ‚fik were the same
for each k.

I Then our decision rule is equivalent to:

‚f(x) =

I This quantity is known as the (squared) Mahalanobis distance
between the point and the centroid. More generally:

d(x, y) =
Ò

(x ≠ y)T ‚�≠1(x ≠ y)

measures the distance standardized appropriately by the
variances. Roughly, (and in 1D this is indeed true) it is
measuring “how many standard deviations away from y is x?”
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Recap: Sphering

I We could alternatively transform the data by creating:

Âxi = ‚�≠1/2xi.

I Then in the balanced case (when ‚fik are equal) our rule is:

‚f(Âx) =
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Recap: Bias-Variance in LDA versus QDA

I Parameter counts:

I In typical cases: LDA has
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Variations on LDA: high dimensions

Suppose the dimension gets even higher?

What if I can’t even estimate the group means well?
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Naive Bayes

Imagine that you have n = 2000 observations and p = 1000
features.

It will be incredibly hard to estimate fk = P (X = x|Y = k) well
for any complicated model!

You need very strong “assumptions” on fk (reducing
parameters/variance)!

Naive Bayes assumes (well, models) that all of the components of
X = (X1, . . . , Xp) are independent (conditional on Y ).
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Naive Bayes

Naive Bayes models all of the components of X = (X1, . . . , Xp) as
independent (conditional on Y ).

Under this independence assumption, the class distributions factor!

fk(x) = P (X = x|Y = k)
=
=

=

This means that we can just estimate the univariate distributions!

f (j)
k (xj) = P (Xj = xj |Y = k)
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Example: Default data from ISLR
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We can easily calculate these simplified class distributions:

‚fYes = ‚fYes(income) ‚fYes(balance) ‚fYes(student)
‚fNo = ‚fNo(income) ‚fNo(balance) ‚fNo(student)

And then plug them into the Bayes classifier formula, just like we
did for LDA

P(default|i, b, s) = ‚fiYes ‚fYes(i, b, s)
‚fiYes ‚fYes(i, b, s) + ‚fiNo ‚fNo(i, b, s)
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Gaussian Naive Bayes

I When the covariates are all continuous, one version of the
Näıve Bayes classifier assumes that:

fk(Xi) ≥ N(µik, ‡2
i ),

i.e. that each feature is (univariate) Gaussian with common
variance across classes. This is called the Gaussian Näıve
Bayes classifier.

I We know this as a special case of another classifier?
I What can we say about the decision boundary of Gaussian

Näıve Bayes (say in the two-class setting)?
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Naive Bayes

Naive Bayes scales well to problems with very large p. We only
need enough data to estimate each of the marginal distributions
well.

It also allows you to have a flexible choice of models for each of
the univariate distributions.

However, Naive Bayes cannot capture interactions between the
features within each class!

LDA and QDA are able to incorporate these feature interactions,
at the cost of needing to estimate them.
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Support Vector Machines: Hyperplanes Review

For the rest of today we will consider binary classification problems
where yi œ {≠1, 1} (instead of yi œ {0, 1}). Several classifiers look
at xT

i — + —0, and assign

‚f(x) =
I

1 xT ‚— + ‚—0 > 0
≠1 xT ‚— + ‚—0 < 0

= sign(xT ‚— + ‚—0)

How should we think about this geometrically?
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Linearly Separable Data

I If our data is linearly separable then there is some (—, —0) such
that:

I Equivalently:
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More Hyperplanes Review

I How far is a point from a hyperplane?
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Building a linear classifer

Suppose I want to build a nice, linear classifier sign(xT — + —0).
How should I choose (—,—0)?

1. I could build a model of each cloud of points, and classify to
the best model

2. I could model probability P (Y = 1|X) with a linear model,

P (Y = 1|X = x) = 1
1 + e≠xT —

3. I could just try to draw a line down the middle.
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Maximum margin classifier: a special case

Where should we put our separating plane?
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Maximum margin classifier: a special case

Where should we put our separating plane?
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Maximum margin classifier: a special case

Maximize M

Subject to yi(xT
i — + —0) Ø M and

pÿ

j=1
—2

j = 1

This is not based on model assumptions! This is just a nice idea of
what “draw a separating line” should look like.

Note that the plane only depends on the points right at the
boundary. The other points could move around and nothing would
change.

However, this is only defined if we have nicely separable groups!
That seems a bit wishful.

20

Y II

M.pe

3oareai4T0margingwsfathndtahrd's
variables I

j lxitptpol sdistancebet.ve

SVM hyperpla

in

if not
sepithenaefoanwnotassfat



Maximum margin classifier: a special case

Now what??
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Support vector classifier

We need to relax the notion of a margin, in case the groups cannot
actually be separated. We introduce a notion of a soft margin
which allows some violations.

This has unexpected benefits! Strict margins give the boundary
points too much influence. Now we can tune the variance of the
boundary.

(ISL pg.345)
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Support vector classifier

Maximize M

subject to
pÿ

j=1
—2

j = 1, Ái Ø 0,
nÿ

i=1
Ái Æ C

yi(xT
i — + —0) Ø M(1 ≠ Ái)

I Parameter C determines “softness” of the margin. Big C
makes it easier to cross. In particular, no more than C
observations cross because. . .

I Variable Ái encodes point location: Ái = 0 outside margin,
Ái > 0 inside margin, Ái > 1 across boundary.
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