Classification: Generative Models (Naïve Bayes) and Support Vector Machines

Siva Balakrishnan Data Mining: 36-462/36-662

February 7th, 2018

6.6.3 of ESL (Na¨ıve Bayes) Chapter 9 of ISL (SVMs) – mainly 9.1 today

Recap: Linear Discriminant Analysis

 \blacktriangleright For generative classifiers:

• We estimate (prior)
$$
\pi_k := \mathbb{P}(Y = k)
$$
 and

$$
f_k(x) = \mathbb{P}(X = x | Y = k).
$$

 $f_k \sim \frac{N}{\mu_k}$, 2

 \mathbf{r}

 \triangleright We classify by:

$$
\widehat{f}(x) = \arg \max_{\mathbf{k}} \quad \frac{1}{k} (x) \, \Pi_{\mathbf{k}}
$$

 \triangleright For LDA we model:

$$
f_k \sim N(\mu_k, \Sigma)
$$
, shared by
all classes

► For QDA we model:

Recap: Decision Boundaries in LDA

Recap: Estimation in LDA

- \triangleright We need to estimate the means for each class, and a single covariance matrix (common to all the classes).
- We do this via maximum likelihood (with minor adjustments) on the training data:

 \triangleright Once we have estimated these we simply plug them in to find the decision rule we actually use:

$$
\widehat{f}(x) = \arg\!
$$

 $\begin{aligned} \widehat{\mu}_k &= \\ \widehat{\pi}_k &= \end{aligned}$

 $\hat{\Sigma} =$

Recap: The Mahalanobis Distance and LDA min d(x, Mk

If Suppose that the classes were balanced, i.e. $\hat{\pi}_k$ were the same for each *k*. f

 \triangleright Then our decision rule is equivalent to: argnax $\sqrt{-x}-\mu$
argnax

 $f(x) =$

This quantity is known as the (squared) *Mahalanobis* **distance** between the point and the centroid. More generally: w

$$
d(x,y) = \sqrt{(x-y)^T \hat{\Sigma}^{-1} (x-y)}
$$

measures the distance standardized appropriately by the variances. Roughly, (and in 1D this is indeed true) it is measuring "how many standard deviations away from *y* is *x*?"

Recap: Sphering

 \triangleright We could alternatively transform the data by creating:

Then in the balanced case (when $\hat{\pi}_k$ are equal) our rule is: arg min $\widehat{f}(\widetilde{x}) =$

Variations on LDA: high dimensions

Naive Bayes

Imagine that you have $n = 2000$ observations and $p = 1000$ features.

It will be incredibly hard to estimate $f_k = P(X = x | Y = k)$ well for any complicated model! You need very strong "assumptions" on *f^k* (reducing parameters/variance)! Naive Bayes *assumes* (well, models) that all of the components of $X = (X_1, \ldots, X_p)$ are *independent* (conditional on *Y*). \rightarrow 1000 dimension density for each class $\overline{\mathbf{c} \cdot \mathbf{c}}$ $\overline{\mathbf{c} \cdot \mathbf{c}}$

Naive Bayes

Naive Bayes models all of the components of $X = (X_1, \ldots, X_n)$ as independent (conditional on Y).

Under this independence assumption, the class distributions factor!

11

We can easily calculate these simplified class distributions: $\hat{f}_{\text{Yes}} = \hat{f}_{\text{Yes}}(\text{income}) \hat{f}_{\text{Yes}}(\text{balance}) \hat{f}_{\text{Yes}}(\text{student})$ $\hat{f}_{No} = \overline{\hat{f}_{No}(\text{income})} \overline{\hat{f}_{No}(\text{balance})} \overline{\hat{f}_{No}(\text{student})}$ λ $f(X|y=Yes)$ $\left(\bigcup \hat{f}(x|y=N_0)\right)$.

And then plug them into the Bayes classifier formula, just like we did for LDA

\n $P(\text{default} i, b, s) = \frac{\hat{\pi}_{\text{Yes}} \hat{f}_{\text{Yes}}(i, b, s)}{\hat{\pi}_{\text{Yes}} \hat{f}_{\text{Yes}}(i, b, s) + \hat{\pi}_{\text{No}} \hat{f}_{\text{No}}(i, b, s)}$ \n	\n not line \n
\n $\text{Say } \text{default} \text{is } O/N \text{ is } O/N \text{ in } \mathbb{Z}.$ \n	
\n not line \n	\n if line \n
\n $P_{\text{No}}(x) \text{ in } \mathbb{Z}.$ \n	
\n if line \n	\n if line \n
\n $P_{\text{No}}(x) \text{ in } \mathbb{Z}.$ \n	

Gaussian Naive Bayes

 \triangleright When the covariates are all continuous, one version of the Naïve Bayes classifier assumes that: , univariate Gaussing

 $f_k(X_i) \sim N(\mu_{ik}, \sigma_i^2),$ i.e. that each feature is (univariate) Gaussian with common variance across classes. This is called the *Gaussian Na¨ıve Bayes* classifier. 3

 \triangleright We know this as a special case of another classifier? ▶ What can we say about the decision boundary of Gaussiar Naïve Bayes (say in the two-class setting)? \int unth diagonal $Covana$

G decision bdy is linear.

Naive Bayes

Naive Bayes scales well to problems with very large *p*. We only need enough data to estimate each of the marginal distributions well.

It also allows you to have a flexible choice of models for each of the univariate distributions.

However, Naive Bayes cannot capture *interactions* between the features within each class!

LDA and QDA are able to incorporate these feature interactions, at the cost of needing to estimate them.

Linearly Separable Data

If our data is linearly separable then there is some (β, β_0) such that:

More Hyperplanes Review

 \blacktriangleright How far is a point from a hyperplane?

X l
C θ Standardize by $\frac{3}{4}$ $I = \frac{\beta}{\beta}$ Punchline $S = \sqrt{B^2 + B}$.

$$
\theta = Z - (2^{T} \beta + \beta_{0}) \beta
$$

\n
$$
\beta^{T} \theta + \beta_{0} = \beta^{T} Z - (2^{T} \beta + \beta_{0}) \beta^{T} \beta + \beta_{0}.
$$

\n
$$
= 0.
$$

\n
$$
\beta = || \theta - Z || = || (2^{T} \beta + \beta_{0}) \beta ||
$$

\n
$$
= |2^{T} \beta + \beta_{0} | ||\beta ||_{2}
$$

\n
$$
= |2^{T} \beta + \beta_{0} |.
$$

Building a linear classifer

Suppose I want to build a nice, linear classifier $\text{sign}(x^T\beta + \beta_0)$. How should I choose (β, β_0) ?

1. I could build a model of each cloud of points, and classify to the best model

2. I could model probability $P(Y = 1|X)$ with a linear model,

 $P(Y = 1 | X = x) = \frac{1}{1 + e^{-x^{T} \beta}}$

3. I could just try to draw a \mathbf{h} e down the middle. could just try to draw a live down the middle.

Maximum margin classifier: a special case

Y III SERVER SERVER STRAKE Maximum margin classifier: a special case margin \mathbb{F}_{ℓ} Maximize *M* are all Subject to $y_i(x_i^T\beta + \beta_0) \geq M$ and $\sum_{i=1}^p \beta_i^2 = 1$ \vee *p* Subject to $y_i(x_i^T\beta + \beta_0) \geq M$ and \sum $\beta_j^2 = 1$ *j*=1 This is not based on model assumptions! This is just a nice idea of χ ;
what "draw a separating line" should look like. This is not based on model assumptions! This is just a nice idea of what "draw a separating line" should look like. \mathcal{S} Note that the plane only depends on the points right at the \mathcal{S} boundary. The other points could move around and nothing would in. change. However, this is only defined if we have nicely separable groups! That seems a bit wishful. if not sep, then cannot solve 20

Maximum margin classifier: a special case

Now what??

Support vector classifier

We need to relax the notion of a margin, in case the groups cannot actually be separated. We introduce a notion of a soft margin which allows some violations.

This has unexpected benefits! Strict margins give the boundary points too much influence. Now we can tune the variance of the boundary.

