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Recap: Regularization – Why?

I Trade-o� fit with model complexity for better generalization.
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I Other benefits: simpler (sparse) models may be
cheaper/faster to evaluate, easier to interpret
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Recap: Regularization – How?

I Lots of di�erent ways. Two basic, popular ones.
I Ridge penalty:

I LASSO penalty:

I Roughly, if we care solely about prediction, and suspect that
most of our predictors are useful (perhaps have moderately
large coe�cients) use Ridge. If you have a very
high-dimensional problem (many predictors), or if you care
about more than just prediction (perhaps interpretability) then
use LASSO.
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Recap: Regularization – in a picture

Our running example from last time: n = 50, p = 30, ‡2 = 1, 10
large true coe�cients, 20 small. Here is a visual representation of
LASSO vs. ridge coe�cients (with the same degrees of freedom):
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Assumptions Philosophy

I You might be used to seeing for example the method of linear
regression motivated by a series of assumptions:

I E[y|X = x] = —T x or y = —T x + ‘, E[‘] = 0, or ‘ ≥ N(0, ‡2)
I ‘ ‹‹ X
I Predictors are not highly correlated.
I Observations are i.i.d.
I

...
I None of these assumptions are necessary to use the method of

(regularized) least squares, and in general the method might
yield useful predictions even when none of these assumptions
are true (or when they are true in some approximate sense).

I “ML/Statistical Learning Philosophy”: Focus mainly on
prediction (less on inference), evaluate using held-out-set
performance.
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Weak and Strong Modeling

I It is worth thinking about stages of method development:
1. Constructing the method
2. Evaluating or interpreting the output of the method
3. Studying the properties of the method

I Strong Modeling: Make strong assumptions about the data
through stages (1)-(3).

I Weak Modeling: Make strong assumptions about the model
for stage (1). Do everything else more pragmatically.

I I personally like the weak modeling approach.
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Another Example

I In classification with logistic regression: we have implicitly
made many modelling assumptions:

I That the conditional distribution of y|X has a certain form
I That the log-likelihood is a reasonable way to fit the model,

the data is i.i.d.
I That the loss we care about is the 0/1 loss
I

...
I Our preference for weak modeling dictates that we use our

modeling assumptions to derive the method (we did this) but
then we move away from assumptions when evaluating the
method. We simply evaluate our classifier using held-out data
(relatively assumption-light).

I If it does not work, we try to understand why (was
log-likelihood a bad choice, was 0/1 loss inadequate, was a
linear decision boundary an over-simplification, is it bias or
variance that is hurting us, . . .) and use this to identify better
methods.
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Changing Gears: Back to Generative Classifiers

Generative models are nice, because they let us think about
modeling the process that generated the data

Think about the classic MNIST digits data:

It might be easier to describe what a 4 looks like than how all the
digits are di�erent.
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Why do we need another classifier?

I Generative classifiers allow us to model problem in a di�erent
way.

I Logistic regression can be unstable for linearly separable data.
More generally, need to regularize.

I Every classification method is derived from di�erent
assumptions about the problem. When these assumptions are
true/close to true then the corresponding classifier will do
very well.

I So for instance, Linear Discriminant Analysis (LDA) will likely
outperform logistic regression when the conditional
distribution of X|y = k are Gaussian with the same
covariance matrix.
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Reminder: Multivariate Gaussian

I Density:

I Visualizing the density:
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Reminder: Multivariate Gaussian, Maximum Likelihood

I Suppose we observed X1, . . . , Xn and wanted to fit a
Gaussian to this data.

I Maximum Likelihood Mean Estimation:

I Maximum Likelihood Covariance Matrix Estimation:
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Basic Idea of Generative Classifiers

I Suppose that we knew fk(x) = P(X = x|Y = k) for all of our
classes k. fk is the density function for a particular x for a
particular class.

I Roughly, we would think it is unlikely that a particular
observation came from class k if fk(x) is very small.

I More precisely, we can use Bayes theorem:
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Linear discriminant analysis

We need to estimate P(X = x|Y = j) and prior probabilities fij in
order to use the generative form of the Bayes classifier.

Linear discriminant analysis (LDA) does this by assuming that the
data within each class are normally distributed:

hj(x) = P(X = x|Y = j) = N(µj , �) density

We allow each class to have its own mean µj œ Rp, but we assume
a common covariance matrix � œ Rp◊p. Hence

hj(x) = 1
(2fi)p/2det(�)1/2 exp

Ó
≠ 1

2(x ≠ µj)T �≠1(x ≠ µj)
Ô

Think of this as a model for classification problems where the
di�erent classes look like shifted clumps.
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What does the decision rule look like? We want to find j so that
P(Y = j|X = x) · fij = hj(x) · fij is the largest. We can define the
rule:

fLDA(x) = argmax
j=1,...K

1
(2fi)p/2det(�)1/2 e≠ 1

2 (x≠µj)T �≠1(x≠µj) · fij

= argmax
j=1,...K

= argmax
j=1,...K

= argmax
j=1,...K

”j(x)

We call ”j(x), j = 1, . . . K the discriminant functions. Note

”j(x) = xT �≠1µj ≠ 1
2µT

j �≠1µj + log fij

is just an a�ne function of x
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In practice, we have to estimate the parameters fij , µj , and �. We
estimate them based on the training data xi œ Rp and
yi œ {1, . . . K}, i = 1, . . . n, by:

I ‚fij = nj/n, the proportion of observations in class j

I ‚µj = 1
nj

q
yi=j xi, the centroid of class j

I ‚� = 1
n≠K

qK
j=1

q
yi=j(xi ≠ ‚µj)(xi ≠ ‚µj)T , the pooled sample

covariance matrix
(Here nj is the number of points in class j)

This gives the estimated discriminant functions:

‚”j(x) = xT ‚�≠1 ‚µj ≠ 1
2 ‚µT

j
‚�≠1 ‚µj + log ‚fij

and finally the linear discriminant analysis rule for new x œ Rp,

‚fLDA(x) = argmax
j=1,...K

‚”j(x)
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Example: LDA decision boundaries

Example of decision boundaries from LDA (from ESL page 109):

fLDA(x) ‚fLDA(x)

Are the decision boundaries the same as the perpendicular
bisectors between the class centroids?
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Thinking about the decision function

‚fLDA(x) = argmax
j=1,...K

xT ‚�≠1 ‚µj ≠ 1
2 ‚µT

j
‚�≠1 ‚µj + log ‚fij

What changes if our loss function is not 0-1? What changes if the
population proportion fik changes?
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Thinking about the decision function

Let’s look at the (xi ≠ µk)T �≠1(xi ≠ µk) term that appears in the
LDA decison rule. How should we think about this?
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Mahalanobis distance

Mahalanobis distance measures the distance from a center in terms
of the variance of the distribution.

For a Gaussian, it captures how far out in the tail of the
distribution a point is.

This is used for LDA, QDA, and Multivariate Gaussian
distributions.

It can also be used for outlier detection and for clustering!

Suppose I’ve seen a lot of data, and now a new point comes along.
How can I tell whether it’s a “rare” or outlier point?
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Mahalanobis distance, PCA, and LDA

Note that LDA equivalently minimizes over k = 1, . . . K,

1
2(x ≠ ‚µk)T ‚�≠1(x ≠ ‚µk) ≠ log ‚fik

It helps to factorize ‚� (i.e., compute its eigendecomposition):

‚� = UDUT

where U œ Rp◊p has orthonormal columns (and rows), and
D = diag(d1, . . . dp) with dk Ø 0 for each k. Then we have
‚�≠1 = UD≠1UT , and

(x ≠ ‚µk)T ‚�≠1(x ≠ ‚µk) =

This is just the squared distance between x̃ and µ̃k!
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Sphering

What is this transformation doing? Think about applying it to the
observations:

x̃i = D≠1/2UT xi, i = 1, . . . n

This is basically sphering the data points, because if we think of
x œ Rp were a random variable with covariance matrix ‚�, then

Cov(D≠1/2UT x) =
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LDA transformed

Hence the LDA procedure can be described as:

1. Compute the sample estimates ‚fik, ‚µk, ‚�

2. Factor ‚�, as in ‚� = UDUT

3. Transform the class centroids µ̃k = D≠1/2UT ‚µk

4. Given any point x œ Rp, transform to x̃ = D≠1/2UT x œ Rp,
and then classify according to the nearest centroid in the
transformed space, adjusting for class proportions—this is the
class k for which 1

2Îx̃ ≠ µ̃kÎ2
2 ≠ log ‚fik is smallest
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Variations on LDA: unequal �
The LDA model assumes that our covariance is the same for all
groups. What if it’s not?
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All the same math goes through, giving Quadratic Discriminant
Functions (and QDA)

”k(x) = ≠1
2(x ≠ µk)T �≠1(x ≠ µk) ≠ 1

2 log |�k| + log fik

= ≠1
2xT �≠1

k x + µk�≠1
k x ≠ 1

2µT
k �≠1

k µk ≠ 1
2 log |�k| + log fik

The � matrices are now di�erent in each function are now
di�erent, and the boundaries ”k(x) > ”kÕ are no longer linear.
Instead, they are

This allows the boundaries to curve around groups to account for
di�erent patterns of spread. It comes at a cost though:
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Figure 4.9 from ISL. Dashed purple curve is the Bayes classifier
decision boundary. Solid green curve is QDA, dotted black line is
LDA. Left: True boundary is linear. Right: True boundary is
quadratic
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Variations on LDA: unequal �

Quadratic discriminant analysis (QDA):

(ESL 4.6)
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Variations on LDA: high dimensions

LDA really becomes instructive when we consider its performance
over a range of dimensions.

Fitting QDA requires estimating

Fitting LDA requires estimating

As the number of parameters increases, the of our
estimator increases (but the hopefully decreases).

Suppose that we have two groups, drawn respectively from
N(µ1, �1) and N(µ2, �2). If we choose to use LDA instead of
QDA, we are choosing a more biased model to reduce variance.
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Variations on LDA: high dimensions
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Variations on LDA: high dimensions

Suppose the dimension gets even higher?

What if I can’t even estimate the group means well?
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