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Not following the book too closely today but Chapter 6 of ISL
should be helpful
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Recap: Logistic Regression Basics

I Logistic Regression is a discriminative classification method
I In the binary case, this means that we model the probability

P(Y = 1|X = x) and use this to make classifications.
I The actual model is:

P(Y = 1|X = x) =
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Recap: Prediction and Decision Boundary

I We fit the model using our training data, and obtain
estimates β̂.

I We predict probabilities using:

I We predict the class label using:

I The decision boundary, i.e. the boundary between points
labeled 1 and 0 is:

I This decision boundary is:
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Recap: Fitting the Model

I Given our training data we fit the model using:

I The likelihood function is given by:

I Unlike in linear regression we cannot simply use calculus to
find the MLE. We find the maximizer using:
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Recap: Linearly Separable Data
I Linearly separable data:

I When data is linearly separable, there are usually many
solutions with ∞ likelihood (some better than others).

I Solving MLE will result in β →∞.

I Need to regularize!
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Regularization Basics

I Regularization, roughly, is a set of techniques used to bias
towards “lower complexity” estimates/predictions by
trading-off model fit with model complexity.

I There are many different ways of trying to regularize an
estimation problem and we will discuss the most important
today.

I There are two primary reasons why we regularize:
I Improve Predictions/Estimates:

I Improve Interpretability:

I We’ll focus on the first one for a while.
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Regularization History

I Regularization was introduced by a Russian geophysicist –
Andrey Tikhonov.

I He was trying to solve regression problems where the solution
was not unique, and found that adding regularizers increased
the stability of the solution.
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Regularization History

I Usual linear regression setup:

I When is the solution not unique?
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Regularization History

I Tikhonov found that solving:

produced much more stable solutions (i.e. perturbing the data
a little bit did not change the solution a lot).

I Solution is now always unique!
I Effectively, discovered the bias-variance tradeoff.
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Non-linear Models, Over-fitting

I Suppose we just had one predictor, and observed this data:

I We could fit a line. How?
I We could fit a quadratic. How?

I
...
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Train Error, Test Error, Model Complexity
I In typical cases, we expect to see a curve that looks like this:
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Over-fitting Mathematically
I Difficult to precisely define over-fitting, but roughly, we say

that we have over-fit if:
I We choose some predictor f∗, and there is another predictor f̃

such that on the training data:

and
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Regularization and Over-fitting

I The basic problem is that of over-fitting. Regularization is
basically a collection of different methods to try to reduce
over-fitting.

I Usually models that are too complex (think high-degree
polynomials in regression, or models with many
features/parameters, or non-smooth estimates, or . . .) do not
generalize well. Roughly, they always look good on the
training data if it is not too large.

I Maybe we should prefer simpler models if they perform
reasonably well since they are likely to generalize better?
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Another thought experiment
I Suppose that we compared different models, as a function of

the sample size. We might imagine we would see curves that
looked like:
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How do we regularize?
I Lots of different strategies and we’ll look at the classics.
I One common idea is to penalize coefficients like Tikhonov did.

Ridge regression is like least squares but shrinks the estimated
coefficients towards zero. Given a response vector y ∈ Rn and
a predictor matrix X ∈ Rn×p, the ridge regression coefficients
are defined as

β̂ridge = argmin
β∈Rp

n∑
i=1

(yi − xTi β)2 + λ
p∑
j=1

β2
j

= argmin
β∈Rp

‖y −Xβ‖22︸ ︷︷ ︸
Loss

+λ ‖β‖22︸ ︷︷ ︸
Penalty

I One important detail is that coefficient magnitudes only have
a comparable meaning (across features) if the features are
standardized (i.e. have mean 0, same length). Will return to
this – but always standardize your features.
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Ridge regression

β̂ridge = argmin
β∈Rp

n∑
i=1

(yi − xTi β)2 + λ
p∑
j=1

β2
j

= argmin
β∈Rp

‖y −Xβ‖22︸ ︷︷ ︸
Loss

+λ ‖β‖22︸ ︷︷ ︸
Penalty

Here λ ≥ 0 is a tuning parameter, which controls the strength of
the penalty term. Note that:

I When λ = 0, we get the linear regression estimate
I When λ =∞, we get β̂ridge = 0
I For λ in between, we are balancing two ideas: fitting a linear

model of y on X, and shrinking the coefficients
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Example: visual representation of ridge coefficients
A visual representation of the ridge regression coefficients for the
same example (n = 50, p = 30, and σ2 = 1; 10 large true
coefficients, 20 small) at λ = 25:
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True Linear Ridge

The coefficients are centered incorrectly, but they are much more
tightly packed than the linear regression coefficients.
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Does it work?
Recall in regression we can always write:

prediction error = unavoidable error + bias + variance
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Linear regression:
Squared bias ≈ 0.006
Variance ≈ 0.627
Pred. error ≈ 1 + 0.006 + 0.627
Pred. error ≈ 1.633

Ridge regression, at its best:
Squared bias ≈ 0.077
Variance ≈ 0.403
Pred. error ≈ 1 + 0.077 + 0.403
Pred. error ≈ 1.48
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Mean squared error for our last example
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Notice that this looks exactly like a model complexity versus test
error curve.
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Other Benefits of Regularization

Some regularizers can also enhance model interpretability.

1. Suppose we are trying to predict if a patient is likely to
develop prostate cancer or not. We measure 1 billion features
for each patient (demographics, their DNA sequence, lifestyle
factors etc.) We collect data on 10000 patients.

2. Likely to over-fit if we don’t regularize properly (too many
features). We try a ridge penalty on a logistic model. Might
fix over-fitting but still will produce a model that is difficult to
interpret – a dense linear combination of our 1 billion features.

3. Maybe we would like to just use predictors with 10 (or a 100)
features. These models are easier to interpret.

4. How do we find the 10 (or 100) best features?
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Variable selection

Out of many variables in our data set, only a few of them may
really be useful. The rest might have zero or small coefficients.

The problem of picking out the relevant variables from a larger set
is called variable selection. In the linear model setting, selecting a
variable is equivalent to giving it a non-zero coefficient.

Sparse linear models (those with many zero coefficients) can be
useful for model interpretability.

How does ridge regression perform if a group of the true
coefficients was exactly zero?
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Remember that as we vary λ we get different ridge regression
coefficients, the larger the λ the more shrunken. Here we plot
them again λ
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The red paths correspond to the
true nonzero coefficients; the gray
paths correspond to true zeros.
The vertical dashed line at λ = 15
marks the point above which ridge
regression’s MSE starts losing to
that of linear regression

An important thing to notice is that the gray coefficient paths are
not exactly zero; they are shrunken, but still nonzero
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The Lasso

Ridge regression gave better predictions than least squares, but
remained uninterpretable.

When p is large, we would like to carry out variable selection at the
same time. We do this with the lasso.

The lasso will shrink the estimate, β̂, while also carrying out
automatic variable selection. As a result, it gives improved
predictions and interpretable (sparse) models!

23



The lasso

The lasso1 estimate is defined as

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ
p∑
j=1
|βj |

= argmin
β∈Rp

‖y −Xβ|22︸ ︷︷ ︸
Loss

+λ ‖β‖1︸ ︷︷ ︸
Penalty

The squared `2 penalty ‖β‖22 of ridge regression, has been replaced
by an `1 penalty ‖β‖1. Even though these problems look similar,
their solutions behave very differently

Note the name “lasso” is actually an acronym for: Least Absolute
Selection and Shrinkage Operator

1Tibshirani (1996), “Regression Shrinkage and Selection via the Lasso”
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The Lasso

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

The tuning parameter λ controls the strength of the penalty, and
(like ridge regression):

I When λ = 0, we get:

I When λ→∞, we get:

For λ in between these two extremes, we are balancing two ideas:
fitting a linear model of y on X, and shrinking the coefficients.
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The Lasso

For λ in between these two extremes, we are balancing two ideas:
fitting a linear model of y on X, and shrinking the coefficients.

The nature of the `1 penalty causes some coefficients to be
shrunken to zero exactly at these intermediate λ values. This
performs variable selection, unlike ridge regression!

As λ increases, more coefficients are set to zero, and among the
nonzero coefficients, more shrinkage is employed
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Example: visual representation of lasso coefficients
Our running example from last time: n = 50, p = 30, σ2 = 1, 10
large true coefficients, 20 small. Here is a visual representation of
lasso vs. ridge coefficients (with the same degrees of freedom):
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Advantages of sparsity

I Interpretability: We can understand what the model relies on
for prediction (understanding f̂)

I We might gain some insight into the underlying data (though
not causally) (helping to understand f)

I If we’re building a predictive score, we can measure fewer
things in the future (simpler f̂ to apply later)
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Important details

When including an intercept term in the model, we usually leave
this coefficient unpenalized, just as we do with ridge regression.
Hence the lasso problem with intercept is

β̂0, β̂
lasso = argmin

β0∈R, β∈Rp
‖y − β01−Xβ‖22 + λ‖β‖1

As we’ve seen before, if we center the columns of X, then the
intercept estimate turns out to be β̂0 = ȳ. Therefore we typically
center y,X and don’t include an intercept them

As with ridge regression, the penalty term ‖β‖1 =
∑p
j=1 |βj | is not

fair is the predictor variables are not on the same scale. Hence, if
we know that the variables are not on the same scale to begin
with, we scale the columns of X (to have sample variance 1), and
then we solve the lasso problem
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Bias and variance of the lasso

Although we can’t write down explicit formulas for the bias and
variance of the lasso estimate (e.g., when the true model is linear),
we know the general trend. Recall that

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

Generally speaking:
I The bias increases as λ (amount of shrinkage)
I The variance decreases as λ (amount of shrinkage)

What is the bias at λ = 0? The variance at λ =∞?
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Example: subset of small coefficients

Example: n = 50, p = 30; true coefficients: 10 large, 20 small
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The lasso can also be fit with glmnet.
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Example: all moderate coefficients
Example: n = 50, p = 30; true coefficients: 30 moderately large
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Note that here, as opposed to ridge regression the variance doesn’t
decrease fast enough to make the lasso favorable for small λ
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Example: subset of zero coefficients

Example: n = 50, p = 30; true coefficients: 10 large, 20 zero
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Advantage in interpretation
On top the fact that the lasso is competitive with ridge regression
in terms of this prediction error, it has a big advantage with respect
to interpretation. This is exactly because it sets coefficients exactly
to zero, i.e., it performs variable selection in the linear model

For instance here is a picture from ESL – comparing LASSO and
Ridge on a prostate cancer dataset.
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Why does the lasso give zero coefficients?

(From page 71 of ESL)
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Simple case: Orthogonal X

We would like to understand how the lasso and ridge regression
work, as well as their differences.

Unfortunately, the lasso does not have a closed form solution. This
makes it somewhat difficult to analyze.

However, in the very simple case where the columns of X are
orthogonal, both the lasso and ridge regression have very simple
forms. These forms give intuition about their behavior.
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Simple case: Orthogonal X

Consider the very simple case where X = I. We can examine how
both ridge regression and the lasso behave on this data.

This is easy, because the variables do not interact with one
another, but it still gives an intuition for their more general
behavior.

When X = I, note that the RSS becomes

‖y −Xβ‖22 =
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Simple case: Orthogonal X

The corresponding penalized forms then become

Ridge:

β̂ridge =

Lasso:

β̂lasso =

We can minimize separately for each i!
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For ridge regression, differentiating yields

and therefore

β̂i =

Thus the estimates from ridge regression correspond to the least
squares estimates reduced by a constant multiple.

Note that this can never give zero coefficients, and that it
penalizes large coefficients quite a bit.
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For the lasso, it turns out that the minimizer of

(yi − βi)2 + λ|βi|

is given by

β̂i =

Thus estimates from ridge regression correspond to shrinking the
least squares estimates toward zero by an additive constant
(without crossing zero).

This can give zero coefficients, and is also relatively harsher on
small coefficients than larger ones. It appears to be better suited
to sparse settings.
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Example: visual representation of lasso coefficients
Our running example from last time: n = 50, p = 30, σ2 = 1, 10
large true coefficients, 20 small. Here is a visual representation of
lasso vs. ridge coefficients (with the same degrees of freedom):
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