
More Neural Networks

Siva Balakrishnan
Data Mining: 36-462/36-662

April 23th, 2019

1

 



Outline for Today

I Just a high-level overview of more neural network
architectures, cool tricks to get them to behave and
applications

2



Plan for the rest of the semester

I Rest of the lectures (including today) won’t be on your final
I Next class, i.e. on Thursday we’ll review the second half of

the course (mainly dimension reduction, clustering)
I HW will go out today, and be due on Wednesday at midnight
I Remember the project deadlines (i.e. next Tuesday predictions

are due, and next Friday write-up is due)

3



Recap: Neural Network Motivation

I One of the most challenging aspects of designing good
classifiers is coming up with good/useful features, i.e.
transformations/representations of the input that make
learning a good classifier easy.

I Neural networks, roughly, try to learn useful transformations
of the data that are useful. Surprisingly, this often works (at
least when you have enough data, enough compute, and know
what you are doing).

4



Recap: Neural Net Basics

Suppose we want to use a representation:

y = „(x; ◊)T — =
pÕÿ

j=1
„j(x; ◊)
¸ ˚˙ ˝

learned features

—j

We cannot use linear „j since that just re-creates a linear model
(not interesting).
So we instead use:

„j(x; ◊) = g(xT ◊j + c)

where g is some non-linear function (often sigmoid, or ReLU).

5

learned features
an O

p apply
some non linearity

Ow



Recap: Representing Classifiers/Regressors as Networks

6

gCw

is p

Efp go
hidden
layers

WH WyWB



Recap: Deep Neural Networks

To get more complex features, we can just recurse! Build more
layers of features, each of which is a non-linear function of a linear
transformation of the previous.

This is the basic idea of feed-forward neural networks or multilayer
perceptrons.

7

linear transf non linearity ffiaftu.es
learn



T
9

go

go
THAN

Some complicated function of
inputs Xi Xp



Recap: Already Lots of choices

This is a very flexible architecture.

8

change non linearity
widths of layers
depth of network
choose to make different connections



Recap: Outputs
We can stick a bunch of final functions on top to get di�erent
outputs. Let h be the output of the final layer.

I Continuous outcome: just use a wT h + b linear function!

I Binary outcome: Just use logistic

1
1 + e≠wT h

=

I Multiple categories: use multinomial-logistic, i.e. we produce
K outputs of the form:

yi = ewT
i h

q
j ewT

j h
.

9

O
signage



Recap: Fitting the Model
The basic idea:

I We use a loss function to measure how well we are fitting, and
then try to find weights that make our loss small
(back-propagation) .

For continuous outputs, we might look Îy ≠ ‚yÎ2
2.

For binary or multiple category outputs, we might look at the log
likelihood of yi:

Logistic:

Y
_]

_[

log
1

1
1+e≠wT h

2
yi = 1

log
3

e≠wT h

1+e≠wT h

4
yi = 0

Multinomial: log

Q

a ewT
yi

h

q
j ewT

j h

R

b

Roughly, get the output of the network to match the y we are
trying to predict, on the training data.

10

on training
dataofp

ofp ofnetwort



Summary so far
I (Deep) Neural networks are a flexible class of non-linear

functions. We can fit them to data by minimizing some loss
function using gradient descent (back-propagation).

I Current research broadly focuses on three questions (that we
can briefly ponder):

1. Representation: Lots of classifiers we have learned (trees,
boosting, nearest-neighbors, kernel SVMs...) all fit non-linear
functions to data. So what exactly are these networks good at
representing and why are they useful?

2. Generalization: They are extraordinarily flexible classifiers.
People have shown for instance that using (su�ciently big)
neural networks we can fit random noise labels (and get 0
training error).
Understanding when/why these networks don’t overfit and how
to regularize them is important (we’ll talk about the basics in a
few slides).

3. Optimization: It is not obvious that gradient descent should
be able to find us useful weights (think of it like local search).
Also, we need some tricks to deal with massive data sets and
large networks. 11

how
do

we are X
ers don

thfeffit



Cool Idea 1: How do we do unsupervised learning with
neural networks?

I Suppose we want to do either clustering or dimension
reduction using a neural network.

I We do not have any y values to fit our network to.
I Seemingly stupid idea: Lets pretend our input is also our

output. This is called an autoencoder.

12

don't haveys
i Replace y byf its

Mwai'd eenough
input x

it will
learnthe
identity



Cool Idea 1: Autoencoders
I Might not be useful because if the hidden layer is wide enough

then we can essentially learn the identity map.
I What if it is not wide enough?

I We have forced the network to do dimension reduction for us.
We just use the representation Z for visualization.

13

decoder

IT
nite



Cool Idea 1: Autoencoders

I An intriguing picture: PCA (left) versus an autoencoder
trained on the MNIST dataset.

I Incidentally, autoencoders are also used for denoising.
I How would you use them for clustering?

14

f also
not
use
labels

Tatteringalgor



Switching Gears: Regularization

In real problems, you’re going to be looking at problems with many
millions of parameters.

We definitely need regularization to avoid overfitting!

One approach is to incorporate regularization on the weights
directly into the loss. One might add on

⁄
1
ÎW (1)Î2

2 + ÎW (2)Î2
2
2

to the penalty to help regularize all the layer weights.

These L2 (ridge) penalties are most common, but L1 (lasso)
penalties are also used for sparse weights.

15

weightsfromfirst
weight layer
decay 2 ur yurts fromaqeqnd



Switching Gears: Regularization

In real problems, you’re going to be looking at problems with many
millions of parameters.

We definitely need regularization to avoid overfitting!

One approach is to incorporate regularization on the weights
directly into the loss. One might add on

⁄
1
ÎW (1)Î2

2 + ÎW (2)Î2
2
2

to the penalty to help regularize all the layer weights.

These L2 (ridge) penalties are most common, but L1 (lasso)
penalties are also used for sparse weights.
In NNs this is called weight decay.

16



Weird Idea 1: Dropout
We saw in random forests that subsampling features can actually
improve stability. A similar e�ect has been observed in deep
learning.

At each iteration, some nodes (or edges) are hidden.

This tends to improve stability and predictions. Like in a random
forest we imagine eventually voting between these di�erent neural
networks.

17

drop out
nodes feature



Weird Idea 2: Data augmentation

When we talked about the digits data, you might have wondered
whether we could just generate new data by transforming our
existing images: translate, rotate, thicken them a little.

This is very common in deep learning! It provides a larger training
set, and also automatically incorporates invariances.

18

g
augment training data with changes
to it that shouldn't change label



Cool Idea 2: Other architectures

So far, we’ve been talking about general feed-forward networks
with dense connections.

In reality, many di�erent architectures are used for neural networks
representing di�erent kinds of problems.

The two most common:

I Convolutional neural networks (CNNs): For regular, grid-like
inputs where we want to share some of the basic processing
and use local information.

I Recurrent neural networks: Sequential data
We will briefly discuss CNNs.

19



Cool Idea 2: CNNs

In image processing, the early stages of processing are likely similar
everywhere on your image: edge detectors, corner detectors,
smoothers, etc.

Furthermore, early processing probably shouldn’t depend on
long-range relationships across your image. I don’t need to see the
other corner of an image to decide if I’m looking at an edge.

Convolutional neural networks encode these ideas in their
architecture. We want to reduce the number of parameters by
re-using them in clever ways.

20



CNNs

Key Idea: Weight Sharing. 21



Cool Idea 3: Generative Adversarial Networks

Suppose we want to create a generative model, i.e. want to be
able to simulate realistic images (possibly with some “features”).

22



Cool Idea 3: Generative Adversarial Networks
Why?

23

ydeepfashion

i

u



Cool Idea 3: Generative Adversarial Networks

24



Cool Idea 3: GANs How?
I Statisticians have thought about generative models for 50

years – estimate the distribution and sample from the
distribution.

I A completely di�erent idea:

25

tweightefer
nee



Interesting Observation 4: Adversarial Examples

A now classic example:

I Turns out to not just be a neural network thing, essentially
every classifier you have learned about has this problem.

I Why does it matter?

26

fairly sure its a panda



Interesting Observation 4: Adversarial Examples
Why does it matter?

I People have shown you can take stop signs, modify them
slightly and have them classified by a neural network as speed
limit signs.

Overall, we do not really understand neural networks very well.
Despite the fact that they achieve human-level performance on lots
of tasks they are brittle and non-human like in many ways
(unsurprising). Lots of research to do... 27

real world
adversarial
examples



Just a start

This is just a taste of what deep learning looks like. There’s a lot
of fun to be had learning about this area, but it could easily fill a
whole course.

There are several computing packages now, most of which are
python friendly. Some of the most popular: Tensorflow, Keras,
Torch, Ca�e, Theano.

Everything you have learned is about 20 lines of code in Keras (for
example).

Lots of books, tutorials, example code out there if you feel like
learning more or playing with neural networks (I would be happy to
link you to things I like).

28


