
Neural Networks

Siva Balakrishnan
Data Mining: 36-462/36-662

April 18th, 2019

1

 



Outline for Today

I Recap
I Feedforward Neural Nets Basics

2



Recap: Dealing with Data

Lots of considerations in analyzing data:
1. Create train, validation, test folds
2. Useful to understand your data (make plots, make conditional

plots, etc.)
3. Understand the task you want to accomplish with data, and

constraints (test time budget, train time budget)
4. Fix/assess outliers and missing-data
5. Think carefully about featurization

3

3

F



Recap: Possible Actions

Once you fit a model there are several possible next steps:
I Get more data
I Make more/better features
I Use a more flexible model
I Use a more regularized/less flexible model

Need to use train and validation errors, and possibly a more
detailed error analysis (look at individual points) to decide what
the next steps are.

4



Recap: Model Tuning
1. Train-validation-test splits
2. Featurization
3. Quick and dirty (fit a couple of models). Understand base

rates (fit naive predictors), understand what error metric you
should be using, know that you can trade-o� things like
precision and recall in many predictors.

4. Diagnose bias/variance problems (use sample-size curves,
model-complexity curves, regularization curves, compare
di�erent models)

5. Fix bias/variance problems (di�erent set of fixes in each case).
Iterate 2,4,5. Think carefully about how to not get bogged
down by the tyranny of tuning parameters (use smaller data
sets, be parsimonious in choices to try out).

6. Error analysis (diagnose points on which you are predicting
poorly, are they outliers? Can you design useful features for
them?).

7. Maybe you need more training data but this should be last
resort. 5

E O



Today: Neural Networks

The intent of today’s lecture (and some of next week) is to
introduce you to ideas from deep learning.

This is generally a large and exciting topic (there are several
classes around campus that are entirely devoted to it).

The hope is that you’ll become comfortable with some of the
ideas, goals, and language, so that you can

I Recognize when it is potentially appropriate
I Discuss the basic ideas
I More easily learn about it when you need to

6



Getting started

Start by considering linear regression. We observe a bunch of
features x œ Rp and outcomes y œ R. We model them by a linear
model:

‚y = f(x) = xT ‚—

We find — by solving the following optimization problem:

argmin
—

ÎY ≠ X—Î2
2 = argmin

—

nÿ

i=1
(yi ≠ xT

i —)2

This works great when our regression function E(Y |X = x) is
approximately linear. What if it’s not?

7

w w

t



Beyond linear regression
We’ve seen some approaches: we can move to a more complicated
f function: random forests, bagging, SVM.

Suppose we want to improve linear regression instead. For many
years, this problem was approached by engineering functions „j(x)
to provide custom features, and then fitting a linear model (this
was also how we thought of kernel SVMs):

y = „(x)T —

In image recognition, edge detection, corner detection, keypoints
(SIFT).

This is incredibly expensive! It lead to improvements, but at great
cost. It’s also very di�cult to scale to new problems.

Maybe I can do it for handwriting and voice dictation, but what
about identifying facial expressions, translating languages,
colorizing images, locating cats, image captioning, etc. 8

X Xp

O og



Beyond linear regression

Neural networks try to construct these „ from the data.

y = „(x; ◊)T — =
pÕÿ

j=1
„j(x; ◊)—j

If we can estimate these „j(x; ◊) well, then we’ve “replaced”
feature engineering!

What should we use for „j(x; ◊)? We like linear functions, what if
we define „j(x; ◊) = xT ◊j?

Why is this a bad idea?

9

0 2 feature engineering
Ichi o usual

T jH engineered feature is Oja
X Hit out Si Jp fig learn linear

classifier reg
on these



riff six



Beyond linear regression

Ok, so we can’t use a linear function. What’s non-linear but similar
to linear regression?

„j(x; ◊) =

Common choices for g:

10

p
non linear

simple non linearities g Oj

Sigmoid non linearity
G pj

Tnolonger linearg e pfx function of K
9 why not1

gaddirecty

C



Rectified Linear Unit Rew
o

cross thresholdthe

turn on



So far

So now we have a model of the form

y =
pÕÿ

j=1
wj„(x; ◊j , cj)

=
pÕÿ

j=1
wj max{0, xT ◊j + cj}

These max{0, xT ◊j + cj} provide simple features of x to use in
your final regression model.

11

Few non linearity



A very simple example
Suppose we want to learn the XOR function, i.e. we have two
binary features X1, X2 and:

y =
I

0 if (X1 + X2) = 0 or 2,

1 otherwise.

No good linear separator. Easy to engineer features so that a linear
classifier works:

12

sike



W 1,1 9 0

W2 l D 8 1

0,0
WIT 19 w2TXtCz y
O I C D

1,0 I O 1

oil I O 1

1,1 2 1 ED

e

i 1 I
2 I

Iplot

s



Representing Classifiers/Regressors as Networks
It will be convenient for us to think about classifiers/regressors by
a network representation. So we can then make our classifiers more
interesting just by playing with the network.

13

ifg is identity

o
f ftp ector

just represent Lsapplygto

y pTX eacheoparde



Logistic Regression as a Network
It will be convenient for us to think about classifiers/regressors by
a network representation. So we can then make our classifiers more
interesting just by playing with the network.

14

y glpTx
sigmoid

i pfpTx

O



1-Hidden Layer Neural Network

15

0 2Pioli idea'Itfion t

KLUG

ReLU x

Rewl p
Vfp

AT



More complexity

To get more complex features, we can just recurse! Build more
layers of features, each of which is a non-linear function of a linear
transformation of the previous.

This is the basic idea of feed-forward neural networks or multilayer
perceptrons.

16

deep Nws py
every

edge
is a parody

9 2 hidden layer

f
NN

learn non linear
projection pursuit



Feed-forward neural networks

This is a very flexible structure. It was shown (1989!) that
feed-forward networks with a single hidden layer can approximate
functions to any desired precision, given enough hidden units!

Of course, this doesn’t say that you can find such a network using
data. . .

In practice, it’s hard to find such a single layer network. The
abstraction of having multiple layers makes this simpler.

17

g
one hidden layer is enough

as long as it is de
enough

bald
be expwide

depth helps waitihthopfgn.ienInaiion

i



Lots of choices

18

i too
network need not
be fully connected
loss function
algorithm choices



Outputs
We can stick a bunch of final functions on top to get di�erent
outputs. Let h be the output of the final layer.

I Continuous outcome: just use a wT h + b linear function!

I Binary outcome: Just use logistic

1
1 + e≠wT h

=

I Multiple categories: use multinomial-logistic, i.e. we produce
K outputs of the form:

yi = ewT
i h

q
j ewT

j h
.

19

QT
Ilythx

x

ahingayersfeature engineering



So we have a model...

We still need to consider:
1. How do we fit this model to data? Often huge number of

parameters, and huge number of training examples.
2. They seem like very flexible models – how do we regularize

them well?
3. How do we make the various architecture choices?

20



Loss Functions
The basic idea should be familiar.

I We use a loss function to measure how well we are fitting, and
then try to find weights that make our loss small.

For continuous outputs, we might look Îy ≠ ‚yÎ2
2.

For binary or multiple category outputs, we might look at the log
likelihood of yi:

Logistic:

Y
_]

_[

log
1

1
1+e≠wT h

2
yi = 1

log
3

e≠wT h

1+e≠wT h

4
yi = 0

Multinomial: log

Q

a ewT
yi

h

q
j ewT

j h

R

b

We can generally design other loss functions for interesting
problems.

21

o
l



truffrom To F ptylintychig
are

O O O O

f µminf fyi Fic
O O

w x2y9t Gi yi I

wt w q TnW

as
Hµ

w



Gradient descent

The neural network problem is non-convex and has many local
minima and saddle points. The solution has no closed form.

The most common approach to this optimization problem is a
variation of gradient descent.

Suppose we want to minimize F (x), x œ Rp. We could compute
the gradient at the current point, x(k)

ÒF (x(k)) =
A

ˆF

ˆx1
, . . . ,

ˆF

ˆxp

B-----
x=x(k)

22



Gradient descent

ÒF (x(k)) =
A

ˆF

ˆx1
, . . . ,

ˆF

ˆxp

B-----
x=x(k)

The gradient points in the local direction of steepest increase. To
walk down hill, we would take a step in the opposite direction:

x(k+1) = x(k) ≠ ÷ÒF (x(k))

The step size, ÷, is also called the learning rate. Picking a good
value of ÷ is important and there are a variety of approaches.

23



Gradient descent

Of course, actually computing the gradient is expensive! Our F is
the loss, possibly (ignoring regularization):

nÿ

i=1
(yi ≠ ‚y(xi))2

The first sum might have 10,000,000 terms! The ‚y function might
have millions of parameters!

We will discuss a bit more about tricks for optimizing and
regularizing neural networks in the next lecture but for now let us
just understand one simple but powerful idea.

24



Computing gradients

Are you looking forward to computing the gradient of
nÿ

i=1
Îy ≠ ‚yÎ2,

with respect to each of the parameters? For instance, with a
2-hidden layer network we would have to find the derivative of:

‚y(x) = wT g
1
W (2)g

1
W (1)x + b1

2
+ b2

2
+ b

= wT max
Ó

0, W (2) max
Ó

0, W (1)x + b1
Ô

+ b2
Ô

+ b

with respect to all the elements of W (1) and W (2)?

25

only takeaway Backpropogation

computes gradiers
with 1 passthroughnetwork



Backpropagation

We can write out all of our computations as a graph (because the
network is nice) and then work our way backwards using the chain
rule.

ˆz

ˆw
= ˆz

ˆy

ˆy

ˆx

ˆx

ˆw

= hÕ(y)gÕ(x)f Õ(w)

26



Backpropagation in an Example

27



Where are we so far?

I We introduced neural networks as a non-linear model for
classification/regression.

I Discussed their motivation (flexible models, try to automate
feature engineering).

I How to understand the network representation of a predictor,
and how to construct deep neural networks.

I Loss functions for measuring how well we are doing.
I Backpropogation for trying to fit the network parameters to

data.

28


