
Tuning Models for Supervised Statistical Learning

Siva Balakrishnan
Data Mining: 36-462/36-662

April 16th, 2019

1

Outline for Today

I Recap: Non-linear Dimension Reduction Methods
I Some General Model Training Guidelines

2

Non-linear Dimension Reduction

I Just like non-linear classifiers can be flexible and useful, we
often want to construct non-linear mappings of our data to a
lower dimensional space for visualization.

I PCA is a linear dimension reduction method.

3

my

pg
scores

Kernel PCA

I Observe that to compute the PCA projection we do not need
X, just the inner-product matrix XXT su�ces.

I Can use the kernel-trick: replace xT
i xj by K(xi, xj) for some

kernel. This gives us the kernel gram matrix K, and we can
compute its top few eigenvectors to get the PC scores and
visualize our data.

4

inner product

expfllxi xjllz

i.ae
g.ph

is

yPCA
after
non linear
map

From pairwise distances to visualization

I Given just the matrix of pairwise distances �ij = ÎXi ≠ XjÎ2
we can visualize our data. This is called classical
multi-dimensional scaling.

I Key idea: use some transformations to go from � æ XXT

and then compute the PC scores.

5

map
I

Recap: From non-Euclidean pairwise distances to

visualization

There is a class of methods which construct a fancier metric �ij

between high-dimensional points x1, . . . xn œ Rp, and then they
feed these �ij through multidimensional scaling to get a
low-dimensional representation z1, . . . zn œ Rk.

In this case, we don’t just get principal component scores, and our
low-dimensional representation can end up being a nonlinear
function of the data

6

i meggareaight
t

way

Recap: Isomap Algorithm

I Build graph.
I Compute shortest path distances.
I Perform MDS on shortest path distances to obtain

visualization.

7

Recap: Laplacian Eigenmaps

We can derive another non-linear visualization method by trying to
optimize the locations of the points so as to not distort small
distances. This leads to Laplacian Eigenmaps.

I Build graph.
I Find Laplacian, compute bottom k eigenvectors V œ Rn◊k.
I Visualize using V .

The same reason why V helps us in clustering applies here, it helps
us in visualization by non-linearly preserving clusters.

8

XXT I

plot rows of V

You have data, now what?

I Most of this is good to know, and some of it will be useful for
your project.

I Do you have a prediction (classification/regression) task in
mind?

I Perhaps someone gives you data. In more realistic
circumstances, you’ve scraped together your own data-set.
Now what?

I Note: much of what follows contains opinion and
over-simplification/over-generalization, rather than pure fact.
There are many ways to approach such problems.

9

3

Getting started

I Figuring out what you have: Variable types, distributions,
relationships

I Looking for problems: Outliers, missing data, inconsistent
coding

10

O I

Get a feel for what’s in your data set

Just explore your data set, so you know what to expect

I Dimension of the data, variables and observations.

I Variable types: factors, dates, numeric, geographic locations.

I Variable distributions: Number of factor levels, imbalance of
factor levels, skewness of variables.

I Simple relationships between variables. Compute/visualize
covariance matrix.

11

1

g

Plot your data!

You will have seen plenty of this in graphics/other classes, so we
won’t get into it much, but will give some ideas.
Ideas:

I Plot univariate and bivariate distributions of variables. Are
variables continuous? Bump like? Mixture like?

I Look at conditional plots (for di�erent classes – we did this
for Näıve Bayes and Logistic Regression) and investigate
di�erences

This will:
I Inform your modeling
I Guide your feature extraction

12

f

Outliers

Outliers are not very well-defined, so there’s no one method for
finding them.

You are worried about points that are abnormal enough that they
unduly influence your model. They may represent:

I Mistakes
I Observations that are not coming from the process you want

to model

Think of them as points that are not good to think of as part of P.

They can be identified in plots, or by a variety of rules (large
Mahalanobis distance, high leverage, and many more).

Sometimes you can fix them (typos, special events). Other times
this entry is essentially missing data.

13

2
model better
designchoose robustmetho

c

Missing data

You will often find missing values in data sets. You need to decide
how to handle them when you make predictions.

I You could remove these whole observations (complete-case
analysis). If the missingness is not informative, this only costs
you data. If it is informative, you are also losing information
and biasing your population.

I You could try to fill in the missing values: imputation
1. Use a strongly correlated variable to predict this one.
2. Nearest neighbors: find the K closest other points and average

their value for this entry.

I You could code the NA information as another value
(sometimes)

14

Missing CAR
Not at random

complete case analysis can be biased

try to fill in missing date

What is your outcome of interest?

Is it a continuous regression problem?
I Do you really care about the value, or just whether it’s big?
I How is your variable behaved? Heavily skewed? Do you see a

lot of the big values that you care about?

Is it a classification problem?
I How many classes do you have?
I What are the default class proportions? What is your base

rate? Do you have severe imbalance?
I What is your goal and what are your costs?

I Do you want better misclassification, or just enriched subsets
of the data?

I Are your costs asymmetric enough that you should be thinking
about di�erent cuto�s, sensitivity/specificity, etc?

15

Is it neither??

Maybe you’re really trying to:

I Find groups of things

I Identify patterns of behavior

I Rank items

I Recommend advertisements/friends/movies to users
...

16

more like clustering

ranking

Constraints on my classifier

Are there practical constraints on my classifier?
I Is my training time severely limited? (Pretty rare)

I Is my evaluation/prediction time severely limited? (Very
common)

I Maybe I can only a�ord to evaluate linear classifications, and
random forests are too expensive

I Does my model need to be interpretable?

Note: even if my final classifier must be simple (e.g., linear), I can
still learn a lot from more flexible models.

17

l

Start learning

Now you’re set up for your learning task. What are the first things
to think about?

I Validation! You want to plan this workflow from the start,
before you lie to yourself

I Features! Extract reasonable first set of features to use for
prediction (an art, lots of work for speech, images, text,
graphs, time series, . . .)

I What to use? Usually start with something simple and
interpretable, and something flexible. This should be quick
and dirty. Iterating is often much more illuminating.

18

Validation

If we magically knew exactly the right model and how well it
worked, we could just fit our model on all n points.

In reality, we need “extra” data to:
I Determine the appropriate model to fit
I Estimate the chosen model’s performance on new data

19

Work flows

There are several possible data splitting work flows.

20

do not use

p
f foranything

Trai

T.lt
jiaahea.o

t

t

K folds

5
40

want unbiased
offer try
compare models

Cross-validation

One approach to avoid splitting too much is cross-validation. This
is an e�cient way to select our model without wasting too much
data.

However, there is still some concern of overfitting on the
cross-validation set. This is especially an issue if we experiment
with many models.

21

t
Hh W

u

Validation error unbiased

for a single model
Not unbiased fees best model

Validation plan

A realistic approach:

1. Split the data into a training set and a testing set.
2. You can further split the training set into a train set and a

validation set (this is easy to understand conceptually but
rarely used in practice). More common: use cross-validation
or out-of-bag errors only on this set to pick your model.

3. Fit your chosen model on the whole training set.
4. At the very end, use your testing set to get an accurate

picture of how well you actually do with that model.

You never touch the testing set during your model experimentation
and selection.

Why do we need the test set?

22

80 20

I4 fold Cv

validation

Some warnings about cross-validation

Cross-validation seems like a magical solution to an impossible
problem. There are a few things to beware of:

1. Can have a high computational cost, especially as the number
of parameters/models grows

2. When the number of models is very large, it can give
misleading results. It is not immune to the usual winner’s
curse problem.

3. The folds need to include the entire estimation pipeline. A
frequent mistake is to carry out part of the model selection
before breaking the data into folds, which invalidates the
result.

23

Is validation erbrfarsedisfrdouwbnsfamr.de

Warning: high computational cost

Suppose it costs c to fit an estimator once.

To fit it across a grid of 100 ⁄ values, it would cost 100c.

If we do 10-fold cross-validation across this grid, it would cost
1000c.

If we do LOOCV, it would cost 100n · c, which could potentially be
tremendously large

If we decide to tune two parameters with 10-fold cross-validation
(each with a 100-value grid), it would cost 100000c. . .

We want to be somewhat judicious in what we choose to tune with
CV (especially given the next slide). There is also a literature in
statistics and computer science which works on tricks to avoid
these high costs.

24

Warning: high number of models

If we search a very large number of models, one of them may look
better completely by chance.

Imagine we are in a binary classification problem (yi œ {0, 1}). If
each model were terrible and just flipped coins to make the test set
prediction, eventually we would try one that looked quite good. In
particular, we would eventually find one that performed better in
cross-validation error than the true best model. This is the
winner’s curse.

This is just something to be aware of when the set of possible
models is expanded dramatically. It is less of a risk in more
constrained settings

25

Warning: excluding part of the pipeline

This mistake happens a lot, and looks slightly di�erent each time.

Remember: For cross validation (or test sets) to work, every
data-driven decision about the model has to exclude the held-out
fold (or the test set).

Bad CV example: Suppose that we observe y and x1, . . . , xp œ Rn,
with p ∫ n. We would like to test our magical prediction
algorithm f̂⁄. Because p is so large, we first filter for xi which have
some reasonable correlation with y, building X̃ with columns
{xi : |cor(xi, y)| > ”}.

Now we estimate f̂⁄ on X̃, y and use cross validation to tune ⁄
and estimate the error.

What goes wrong??

26

Remove Iteration re

Feature generation

Again several over-generalizations:
I The general lesson that has been learned through many

applications and contests is that the data and features is often
more important than the exact algorithm that you apply.

I Tweaking the algorithm gives small gains. Developing new
features to feed into your algorithms gives big gains.

I This is where the power of forests, boosting, and deep learning
come in. They have an ability to use features more flexibly.

27

f

Feature generation

It is di�cult to give much specific advice about feature generation,
since it is so problem-dependent.

A few comments:
I With modern algorithms (e.g., Lasso, random forests), having

extra features does not hurt much. You can a�ord to generate
many useless features in pursuit of a few really good ones.
This means you can consider multiple transformations or
versions of the same information.

I Make sure only to use information you would have in new
samples! For example: you can’t use signs that a company
has gone out of business when predicting its viability. (This
happens. . .)

28

its
pmany

useless
features

as
long

offenate useful features

You’re ready to learn!

You’ve seen many models, and hopefully obtained an intuition for
how they behave. You can think about which models are good for
your situation.

I Linear/logistic regression
I Ridge regression/logistic regression
I Lasso or logistic lasso
I Trees
I Random forests
I Boosted trees
I SVM
I LDA

You should consider – which of these are flexible, non-linear,
interpretable, good at dealing with irrelevant features.

29

First models

The quick and dirty approach:
I Something simple and interpretable. Often Lasso (prediction)

or Logistic Lasso (classification).
I Something flexible and more powerful. Often random forests.

Di�erences between the two models can hint at what you might be
ignoring with the simple model. You can explore the di�erence and
try to see why.

Variable importance and partial dependence plots from the random
forest can suggest important variables, new transformations, and
important interactions.

30

em

Now what?

You have your data. You have some features. You’ve fit a couple
models and have estimates of their error.

Now what? How do you improve your error?

(Also, what error should you actually care about?)

31

One approach: Think about Bias-Variance Tradeo�! Remember,
all the error you can correct is either in your bias or your variance.

Is your current model too biased or too variable?

One way to get a hint: look at the di�erence between training and
test error.

What does it mean if:
I The training error is much smaller than the test (CV) error?

I The training error is about the same as the test (CV) error?

32

bias problem

rt

validat

y ya

error.ggdrIieifsisamEEtesde

i

0 500 1000 1500 2000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

n

er
r

LDA Train
LDA Test
QDA Train
QDA Test

LDA with fixed p and varying n. True model fits QDA
assumptions, but it can be too high variance.

33

0 500 1000 1500 2000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

n

er
r

LDA Train
LDA Test
QDA Train
QDA Test

LDA with fixed p and varying n. True model fits QDA
assumptions, but it can be too high variance.

34

What can you do to change your model? What do these do to the
bias and variance?

I Get more data:

I Make more/better features:

I Use a more flexible model:

I Use a more regularized model:

35

Tweaking features

You can look at the variables that are currently important to give
some hints of better variables.

If a variable is important, how can you make it more useful? What
other variables might it suggest are useful?

If it is not important but you thought it should be, what is going
wrong?

Variable importance plots can hint at useful variables when
included with transformations or interactions. Partial dependence
plots can reveal better transformations and even interactions.

36

What errors do you care about?

In regression problems: Is least squares error reasonable for your
problem?

In classification: Is misclassification error appropriate? Do you care
about false positives and false negatives equally? How should you
trade them o�?

37

Correcting for badly imbalanced samples

When one class is much smaller than the other, most of our
classifiers don’t do very well. There are a few approaches to fixing
this:
Suppose that you have 90% class 1, and 10% class 2.

I Downsampling: Sample one (or a few) elements of class 1 for
each element of class 2 to make it more balanced

I Upsampling: Duplicate elements of class 2 to make it more
balanced.

I Artificially change your prior weights, class weights, or case
weights. This depends a bit on which method you are using.

Always keep an eye on your base rate: the fraction of each class in
your data. That keeps you aware of this problem, and lets you
know what good performance really is: 10% misclassification in the
problem above is not very impressive. . .

38

Siva’s Summary

1. Train-validation-test splits
2. Featurization
3. Quick and dirty (fit a couple of models). Understand base

rates (fit naive predictors), understand what error metric you
should be using, know that you can trade-o� things like
precision and recall in many predictors.

4. Diagnose bias/variance problems (use sample-size curves,
model-complexity curves, regularization curves, compare
di�erent models)

5. Fix bias/variance problems (di�erent set of fixes in each case).
Iterate 2,4,5. Think carefully about how to not get bogged
down by the tyranny of tuning parameters (use smaller data
sets, be parsimonious in choices to try out).

6. Error analysis (diagnose points on which you are predicting
poorly, are they outliers? Can you design useful features for
them?).

7. Maybe you need more training data but this should be last
resort. 39

a

I
1 6
E

