
Unsupervised Statistical Learning:

Back to Dimension Reduction

Siva Balakrishnan
Data Mining: 36-462/36-662

April 9th, 2019

1

Outline for Today

I Recap: Spectral Clustering
I More Algorithms for Dimension Reduction

2

Recap: The Graph Laplacian

The matrix:

L = D ≠ W,

is called the Graph Laplacian. It is a symmetric, real-valued matrix,
so it has an eigendecomposition. We have already seen that for
any vector v:

v
T

Lv = 1
2

nÿ

i=1

nÿ

j=1
Wij(v(i) ≠ v(j))2 Ø 0,

so all its eigenvalues are positive.

Intuition: Bottom few eigenvectors are very smooth (as close to
constant as they can be) and are very useful for partitioning the
graph.

3

Recap: Cuts and Eigenvectors

If we want to find the minimum balanced cut we can instead solve
the following problem:

arg min
v

v
T (D ≠ W)v

I Entries of v are all {+1, ≠1} (so it is a cut vector).
I Entries of v sum to 0 (so it is balanced).

Spectral clustering into two clusters is a relaxation of this. We
solve:

arg min
v

v
T (D ≠ W)v

I Entries of v sum to 0 (so it is balanced),
and then threshold the entries of v to find our clusters.

4

E min balanced

x

find 2nd
smallest
EV of L

Recap: Basic Spectral Clustering Algorithm

If we want to cluster our data into two clusters we will follow these
steps:

I Build a (weighted) graph on the data points (in one of three
ways).

I Construct the graph Laplacian matrix, i.e. compute the
matrix D ≠ W .

I Find its second-smallest eigenvector v2.
I Threshold its entries to find the clusters, i.e. take

A = {i : v2(i) > 0}, and B = {i : v2(i) Æ 0}.

The second smallest eigenvector of the Laplacian has its own name
(Fiedler vector).

5

Recap: Algorithm for clustering into k-clusters

If we want to cluster our data into k-clusters we will follow these
steps:

I Build a (weighted) graph on the data points (in one of three
ways).

I Construct the graph Laplacian matrix, i.e. compute the
matrix D ≠ W .

I Find its smallest k eigenvectors {v1, v2, . . . , vk}, put them in
a matrix V œ Rn◊k.

I Interpret the rows of V as our data points. Run k-means on
this data to find k-clusters.

Key Point: Spectral Embedding (i.e. mapping into coordinates
defined by the eigenvectors of the Laplacian) tends to separate
graph clusters.

6

spectral embedding

Recap: The Spectral Embedding

Just some intuition through pictures:

Key point: k-means on the embedding performs much better
than k-means on the original data.

7

Recap: Clustering disconnected graphs

The Laplacian of a disconnected graph looks like this:

What are the bottom k eigenvectors of this matrix?

Perfect for running k-means.
8

Recap: Spectral clustering v/s k-means

I If clusters are (well-separated) blobs: k-means will do well but
so will spectral clustering.

I If clusters are dense but have strange shapes then spectral
clustering will typically do much better.

9

means

Do

I

Recap: Spectral Clustering in Practice

I People often use the normalized Laplacian instead of the
graph Laplacian.

I The normalized Laplacian divides each entry of the Laplacian
by the square root of the degrees of the two corresponding
nodes, i.e.:

Lnormalized = D
≠1/2

LD
≠1/2

.

So,

Lnormalized(i, j) = L(i, j)

didj
.

The normalized Laplacian has many of the same properties as
the graph Laplacian but tends to give better clusters in
practice.

I The rest of the algorithm is identical (compute the bottom k

eigenvectors and run k-means on them).
10

Recap: Spectral Clustering in Practice

I The algorithm now has more tuning parameters than k-means.
1. The number of clusters k: In the ideal case, we know we

should have k eigenvalues close to 0, and the k + 1 eigenvalue
should be large. So in practice we often look for the first large
gap in the eigenvalues. Roughly,

k
ú = arg max

k
|⁄k ≠ ⁄k+1|.

2. The choice of the similarity graph: Need to choose
between k-NN similarity, ‘-neighborhood and weighted. In
practice, the k-NN graph often works well (and is a good
starting point). It also gives us a sparse graph (which is useful
computationally).

3. The choice of k in the k-NN graph: Again, a very hard
question to answer. Often the heuristic is to make sure k is
large enough so that the resulting graph has very few
disconnected components. (If the graph has many
disconnected components then spectral clustering just returns
some subset of those components.)

11

1

Back to data visualization and PCA

X = U ◊ D ◊ V
T

.

A curious fact:
I Recall, that in order to visualize data using PCA, all we

needed we the principal component scores (i.e. the things in
the matrix U ◊ D). Why?

I Suppose instead of giving you the matrix X (i.e. the data) I
only gave you the matrix X

T
X. Could you still “visualize” the

data?
I How about if I gave you the matrix XX

T ?

12

mad did
XERnxd

qj
n o I sushi

Tw

whattis it dimension dxd
T U

using XLI we can compute v

XII
U
Dnxv

UxD T

VCE VT
n

h

UD D

XXT U D2UT can
compute
U xD

The matrix XXT

I The matrix XX
T is called the inner-product matrix. Why?

I Our curious fact in words: We can visualize the data even
without having the original data. Using PCA (or an
eigendecomposition) we can go from similarities to a
meaningful point cloud.

13

c pinxn
X Xix

Xxt ij XFXj

Kernel PCA

The fact that we can do PCA with just the inner-products between
the data points should suggest something. Why not kernelize PCA?
Kernel PCA algorithm:

I First compute the gram-matrix:

K =

S

WU
K11 K12 . . . K1n

...
Kn1 . . . Kn(n≠1) Knn

T

XV ,

where

Kij = exp
A

≠ÎXi ≠ XjÎ2
2

“2

B

,

(usually also need to center K).
I Compute the eigendecomposition of K = U ◊ D ◊ U

T , and
use U ◊

Ô
D as our PC scores.

Might seem counter-intuitive – we are first increasing the
dimension (by our feature map) and then reducing it (by PCA).

14

Xix replace Kai xj

Rain

RBF of 4 4 0150
kernel P

pick 2 columns andplot

The power of non-linear dimensionality reduction

Some examples:

15

que
pts

red

admirationaroitance

nogood linear
projections

2
kernel
PCA

The power of non-linear dimensionality reduction

Some examples:

16

HE top'Iarianhighest

Maflipecara
kernel PCA

More curious facts: Multi-dimensional Scaling

We are going to go from similarities to distances.
We have seen that we can visualize just given XX

T . Suppose
instead I just gave you the matrix � œ Rn◊n of pairwise distances:

�ij = ÎXi ≠ XjÎ2.

We want a lower-dimensional representation z1, . . . zn œ Rk, for
some small k (e.g. k = 2 or 3), such that Îzi ≠ zjÎ2 ¥ �ij , for
every i, j = 1, . . . n

We saw that the principal component scores do exactly this, but
these rely on X or XX

T , which we don’t have here. We can only
use the distances �ij

Is this possible?

17

g

Non-identifiability

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

−2 0 2 4 6

−2
0

2
4

6

Representation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

−2 0 2 4 6
−2

0
2

4
6

Translated representation

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

−2 0 2 4 6

−2
0

2
4

6

Rotated representation

Distances �ij are invariant under any orthonormal transformation
O œ Rp◊p of x1, . . . xn (i.e., O

T
O = I)

18

Ts dist matrix has lessminfioorn

Multidimensional scaling

Assume that X œ Rn◊p has been column centered (this is enough
to deal with translation unidentifiability)

Multidimensional scaling (MDS): given distance matrix � œ Rn◊n,
we

1. Recover the inner-product matrix B = XX
T œ Rn◊n

2. Factorize B to get the first k principal component scores
(Called classical multidimensional scaling, there are other flavors,
e.g., least squares multidimensional scaling)

We’ve already seen how to do step 2: remember that we compute
the eigendecomposition B = UDU

T and then the first k principal
component scores are the first k columns of U

Ô
D

So, how do we do step 1, i.e., how do we recover B?

19

Xj Ki xj5cxi Xj
9 Xixi xFxj 2Xi

agiven A3 XXT want
his

f Biit Bjj 2 Bij
T

Recovering inner-products from distances

The following procedure can be used to recover the inner-products
B = XX

T from �:

1. Compute Aij = ≠1
2�2

ij to form the matrix A œ Rn◊n

2. Easy to understand way: Solve the system of equations to
obtain B:

Aij = Bij ≠ (Bii + Bjj)/2.

3. Alternative fancy way: Double center A—i.e., center both the
columns and rows of A—to recover the matrix B œ Rn◊n.
Note that this is the same as:

B = (I ≠ M)A(I ≠ M)

where M = 1
n11T œ Rn◊n

20

Beyond Euclidean distance

If the �ij were actual Euclidean distances between the rows of a
centered matrix X œ Rn◊p, we get back the first k principal
component scores exactly.

MDS would be just like doing PCA, except the result would not be
identified up to an orthogonal transformation. Why do it?

Importantly, multidimensional scaling can be applied to any �ij ,
not just Euclidean distances.

In these settings, MDS finds a set of points Z œ Rn◊k so that the
distances between rows xi, xiÕ are close to �iiÕ .

21

can compute non lineardist
I
then

do MDS

Beyond Euclidean distance

There is a class of methods which construct a fancier metric �ij

between high-dimensional points x1, . . . xn œ Rp, and then they
feed these �ij through multidimensional scaling to get a
low-dimensional representation z1, . . . zn œ Rk.

In this case, we don’t just get principal component scores, and our
low-dimensional representation can end up being a nonlinear
function of the data

Why would we want to use non-
Euclidean distances?

22

unroll this
object

T

Isometric feature mapping

Isometric feature mapping1 (Isomap) learns structure in a more
general setting to define distances. The basic idea is to construct a
graph G = (V, E), i.e., construct edges E between vertices
V = {1, . . . n}, based on the structure between x1, . . . xn œ Rp.
Then we define a graph distance �Isomap

ij between i and j, and use
multidimensional scaling for our low-dimensional representation

(From Tenenbaum et al. (2000))

1Tenenbaum et al. (2000), “A global geometric framework for nonlinear
dimensionality reduction”

23

I

The Isomap graph distances

Constructing the graph: for each pair i, j, we connect i, j with an
edge if either:

I xi is one of xj ’s k nearest neighbors, or
I xj is one of xi’s k nearest neighbors

The weight of this edge e = {i, j} is then we = Îxi ≠ xjÎ2 (can
also ignore the weights)

Defining graph distances: now that we have built a graph, i.e., we
have built an edge set E, we define the graph distance �Isomap

ij
between xi and xj to be the shortest path in our graph from i to j:

�Isomap
ij = min

paths P ™ E
from i to j

ÿ

eœP

we

24

asfEgged

find B XI fudai pot

9

Isomap Algorithm

I Build graph.
I Compute shortest path distances.
I Perform MDS on shortest path distances to obtain

visualization.

25

Laplacian Eigenmaps

Another slightly more optimization-theoretic viewpoint.
I Suppose that we built our graph, and all that we want is to to

find a 1D embedding (embedding on to a line) so that points
that are close in the graph are also close in the embedding.

I For each data point, we associate a real number f1, . . . , fn,
and try to minimize:

min
f1,...,fn

nÿ

i=1

nÿ

j=1
Wij(fi ≠ fj)2

.

Seems sensible but has a trivial solution.
I Add some constraints:

min
f1,...,fn

nÿ

i=1

nÿ

j=1
Wij(fi ≠ fj)2

,

subject to
nÿ

i=1
f

2
i = 1,

nÿ

i=1
fi = 0.

26

Tif i jare conn

then Wij t

e hauemeano
I want

A variance 1 fi fj
2

pts to be
should be spread out

small

I

i

if I 4 are connected then

I want f fy to be close

min
HH III o I
solution is just compute
second smallest EV of L

Laplacian Eigenmaps

We know the solution to this problem:

min
f1,...,fn

nÿ

i=1

nÿ

j=1
Wij(fi ≠ fj)2

,

subject to
nÿ

i=1
f

2
i = 1,

nÿ

i=1
fi = 0.

Simply embed according to the second smallest eigenvector of the
Laplacian.

More generally, we can use the spectral embedding from spectral
clustering for dimension reduction. This is called Laplacian
Eigenmaps.

27

2 compute

spectral

embedding

Laplacian Eigenmaps: Algorithm

I Build graph.
I Find Laplacian, compute bottom k eigenvectors V œ Rn◊k.
I Visualize using V .

The same reason why V helps us in clustering applies here, it helps
us in visualization by non-linearly preserving clusters.

28

