Unsupervised Statistical Learning: Clustering Graphs

> Siva Balakrishnan Data Mining: 36-462/36-662

> > April 4th, 2019

1

Outline for Today

- \blacktriangleright Recap: Graphs and Clustering Graphs
- \blacktriangleright Spectral clustering
- \blacktriangleright Multi-dimensional scaling (MDS) (just an introduction)

Recap: Graphs

It is often convenient and useful to think about data in terms of graphs.

- **I** (Unweighted) Graphs: Just vertices and edges. Equivalent to every edge having weight 1.
- \triangleright Weighted Graphs: Each edge, say between vertices *i* and *j*, has weight w_{ij} .

For us, graphs will usually be **undirected** (i.e. the edges do not have an orientation), and weights will usually be positive.

3

Recap: From Data to Graphs

We are given our usual collection of data points $\{X_1, \ldots, X_n\}$. How do we build a graph from these? Roughly:

- 1. **Nodes:** These are the data points.
- 2. **Edges/Weights:** We want to connect points that are similar. Weights will measure "similarity".

Recap: From Data to Graphs

Does poorly in practice.

Second Attempt: Find best balanced cut:

$$
\left\{\underbrace{\min_{A,B \text{ of equal size}}}_{\text{cut}(A,B)} \text{cut}(A,B) \right\}
$$

Does very well in practice. However, hard to compute. Spectral clustering is a fast, approximate way to find a balanced cut.

Recap: Graphs as Matrices

▶ Degree Matrix: The *degree* of a node is the sum of the weights of the edges connected to that node. We can collect the degrees in a diagonal matrix D , where

$$
\begin{bmatrix}\n\frac{\partial f^{(1)}}{\partial x} & \frac{\partial f^{(2)}}{\partial y} \\
\frac{\partial f^{(1)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} \\
\frac{\partial f^{(1)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} \\
\frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} \\
\frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} \\
\frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} \\
\frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} \\
\frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial z} & \frac{\partial f^{(2)}}{\partial z} \\
\frac{\partial f^{(2)}}{\partial y} & \frac{\partial f^{(2)}}{\partial z} \\
\frac{\partial f^{(2)}}{\partial z} & \frac{\partial f^{(2)}}{\partial
$$

Recap: Cuts as Vectors

► Cut Vectors: For every partition (A, B) of the vertices, we can associate a vector v_{AB} . The entries of v_{AB} will be $+1$ on $V \in \mathbb{R}^{n}$ A and -1 on B.

Recap: The Minimum Balanced Cut

Some simple tedious algebra shows the following:

$$
\operatorname{cut}(A, B) = \frac{1}{4} v_{AB}^T (D - W) v_{AB}.
$$

So if we want to find the minimum balanced cut we can instead solve the following problem:

$$
\underbrace{\text{arg}\min_{v} v^{T}(D-W)v}_{\text{in at all } \{\pm 1, -1\}} \text{ (so it is a cut vector).}
$$

- ▶ Entries of v are all $\{\pm 1, -1\}$ (so it is a cut vector).
- Intries of v sum to 0 (so it is balanced).

out vector

to $\{K_i, B_i\}$

corresponding

The Graph Laplacian

The matrix:

$$
L = D - W,
$$

is called the *Graph Laplacian*.

 \blacktriangleright The graph Laplacian is a very important matrix in understanding graphs (arises naturally in partitioning problems, understanding random walks on graphs, understanding flow and congestion in graphs*...*).

An example

Properties of the Graph Laplacian

It is a symmetric, real-valued matrix, so it has an eigendecomposition. We have already seen that for any vector *v*:

Spectrum of the Graph Laplacian

- \triangleright All the eigenvalues of the Laplacian are positive.
- The vector $v = [1, 1, \ldots, 1]^T$ (you can normalize it if you prefer) is an eigenvector of the graph Laplacian, with eigenvalue 0. To see this we just have to check:

 $Lv = \left(D - W \right) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} =$ $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ \triangleright This means that all other eigenvectors v_j must satisfy the condition that: O

$$
\mathcal{T}_{v_j \times} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0
$$

So every other eigenvector is "balanced".

The point so far

We want to find a good balanced cut. We have seen that this is the same as finding a vector *v* which minimizes:

$$
\min_{v} \underbrace{v^T (D - W)v},
$$

where *v* satisfies two conditions:

- Its entries are $+1$ and -1 (so it defines a cut).
- Its entries sum to 0 (so that the cut is balanced):

$$
\sum_{i=1}^n v(i) = 0.
$$

Basic Spectral Clustering

We want to solve the (computationally difficult) problem:

$$
\min_{v} v^T (D - W)v,
$$

where *v* satisfies two conditions:

- Its entries are $+1$ and -1 (so it defines a partition).
- Its entries sum to 0 (so that the partition is balanced):

$$
\sum_{i=1}^{n} v(i) = 0.
$$

Instead we will solve the relaxation:

$$
\min_{v} v^T (D - W) v,
$$

where *v* satisfies **one** condition:

85 p

Its entries sum to 0 (so that the partition is balanced):

n

$$
\sum_{i=1}^{n} v(i) = 0.
$$

C

Basic Spectral Clustering

Instead we will solve the relaxation:

$$
\min_{v} v^T (D - W) v,
$$

where *v* satisfies **one** condition:

Its entries sum to 0 (so that the partition is balanced):

$$
\sum_{i=1}^{n} v(i) = 0.
$$

The solution is just the second smallest eigenvector of the Laplacian (easy to compute). However, we now have a problem. And a solution: $Intries$ of v_2 are not to $r 2A: V_2(1) > 0$ $B: V_2(i)$ so

Algorithm

If we want to cluster our data into two clusters we will follow these steps:

- \triangleright Build a (weighted) graph on the data points (in one of three ways).
- \triangleright Construct the graph Laplacian matrix, i.e. compute the matrix $D - W$.
- \blacktriangleright Find its second-smallest eigenvector v_2 .
- \blacktriangleright Threshold its entries to find the clusters, i.e. take $A = \{i : v_2(i) > 0\}$, and $B = \{i : v_2(i) \le 0\}$.

The second smallest eigenvector of the Laplacian has its own name (Fiedler vector).

Some Examples

How do we cluster into more than 2 clusters? 18

Algorithm for clustering into *k*-clusters

If we want to cluster our data into *k*-clusters we will follow these steps:

- \triangleright Build a (weighted) graph on the data points (in one of three ways).
- \blacktriangleright Construct the graph Laplacian matrix, i.e. compute the matrix $D - W$. The Dec Co

 $\sqrt{2}$

- Find its smallest k eigenvectors $\{v_1, v_2, \ldots, v_k\}$, put them in a matrix $V \in \mathbb{R}^{n \times k}$.
- \blacktriangleright Interpret the rows of V as our data points. Run k -means on this data to find *k*-clusters.

Might seem a bit mysterious: Why is this better than running *k*-means on the original data?

 $L \in \mathbb{R}^{n \times n}$.

and quite L \overline{X} \overline{X}

 $\sum_{u}^{A} \in \mathbb{R}^{d \times d}$

The Spectral Embedding

Just some intuition through pictures:

Key point: The spectral embedding (i.e. using the eigenvectors of the Laplacian as the data points) tends to separate clusters very well. k -means on the embedding performs much better than k -means on the original data.

Why does this happen?

Let us first consider a simple case for clustering graphs. Suppose our graph has three separate connected components:

What does the adjacency matrix look like? What about the Laplacian?

$$
W = \left[\frac{1^{1} \frac{1}{1} \cdot 0}{0} \frac{1}{1} \frac{1}{1} \cdot 0}{0} \right] = D - W = \left[\frac{L_1}{0} \frac{0}{1} \right]
$$

Clustering disconnected graphs

So we have just argued that the Laplacian of our disconnected graph looks like this:

Clustering disconnected graphs

Clustering in more realistic cases

In most real data analysis the graph we build will not neatly separate into the *k*-clusters that we want.

- \triangleright The eigenvectors of a matrix (under some natural conditions) do not change much when you change the matrix by a small amount.
- \triangleright So if our graph approximately looks like a k -piece disconnected graph (i.e. few edges between the pieces, and hopefully lots of edges within the pieces) then spectral clustering will work well.

Spectral clustering v/s k-means

- If clusters are (well-separated) blobs: k-means will do well but so will spectral clustering.
- \blacktriangleright If clusters are dense but have strange shapes then spectral clustering will typically do much better.

Spectral Clustering in Practice

- **People often use the** *normalized Laplacian* instead of the graph Laplacian.
- \triangleright The normalized Laplacian divides each entry of the Laplacian by the square root of the degrees of the two corresponding nodes, i.e.:

$$
L_{\text{normalized}} = D^{-1/2} L D^{-1/2}.
$$

 \int

 $\sum_{n=1}^{\infty}$

will use in H N

So,

$$
L_{\sf normalized}(i,j) = \frac{L(i,j)}{\sqrt{d_i d_j}}.
$$

The normalized Laplacian has many of the same properties as the graph Laplacian but tends to give better clusters in practice.

 \blacktriangleright The rest of the algorithm is identical (compute the bottom k) eigenvectors and run *k*-means on them).

Spectral Clustering in Practice

 \blacktriangleright The algorithm now has more tuning parameters than k -means.

1. The number of clusters k : In the ideal case, we know we should have *k* eigenvalues close to 0, and the $k+1$ eigenvalue should be large. So in practice we often look for the first large gap/n the eigenvalues. Roughly,

$$
k^* = \arg\max_k |\lambda_k - \lambda_{k+1}|.
$$

The choice of the similarity graph: Need to choose between k -NN similarity, ϵ -neighborhood and weighted. In practice, the *k*-NN graph often works well (and is a good starting point). It also gives us a sparse graph (which is useful computationally). 2 zeros

3. **The choice of** *k* **in the** *k***-NN graph:** Again, a very hard question to answer. Often the heuristic is to make sure *k* is large enough so that the resulting graph has very few disconnected components. (If the graph has many disconnected components then spectral clustering just returns some subset of those components.)

Back to data visualization and PCA

$$
X = U \times D \times V^T.
$$

A curious fact:

- \triangleright Recall, that in order to visualize data using PCA, all we needed we the principal component scores (i.e. the things in the matrix $U \times D$). Why?
- **If** Suppose instead of giving you the matrix X (i.e. the data) I only gave you the matrix *X^T X*. Could you still "visualize" the data?
- \blacktriangleright How about if I gave you the matrix XX^T ?

The matrix *XX^T*

 \blacktriangleright The matrix XX^T is called the *inner-product matrix*. Why?

 \triangleright Our curious fact in words: We can visualize the data even without having the original data. Using PCA (or an eigendecomposition) we can go from similarities to a meaningful point cloud.