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Outline for Today

I Recap: Graphs and Clustering Graphs
I Spectral clustering
I Multi-dimensional scaling (MDS) (just an introduction)
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Recap: Graphs

It is often convenient and useful to think about data in terms of
graphs.

I (Unweighted) Graphs: Just vertices and edges. Equivalent
to every edge having weight 1.

I Weighted Graphs: Each edge, say between vertices i and j,
has weight wij .

For us, graphs will usually be undirected (i.e. the edges do not
have an orientation), and weights will usually be positive.
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Recap: From Data to Graphs

We are given our usual collection of data points {X1, . . . , Xn}.
How do we build a graph from these?
Roughly:

1. Nodes: These are the data points.
2. Edges/Weights: We want to connect points that are

similar. Weights will measure “similarity”.
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Recap: From Data to Graphs

Three canonical ways:
I ‘-neighborhood graph:

I k-NN graph:

I Weighted similarity graph:
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Recap: Clustering Graphs

First Attempt: Find best cut, i.e.:

min
A,B

cut(A, B) = min
A,B

ÿ

iœA,jœB

wij .

Does poorly in practice.

Second Attempt: Find best balanced cut:

min
A,B of equal size

cut(A, B).

Does very well in practice. However, hard to compute. Spectral
clustering is a fast, approximate way to find a balanced cut.
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Recap: Graphs as Matrices

I Adjacency Matrix: We can just collect the weights Wij into
a (symmetric) matrix W . This is called the adjacency matrix.

I Degree Matrix: The degree of a node is the sum of the
weights of the edges connected to that node. We can collect
the degrees in a diagonal matrix D, where

Dii =
nÿ

j=1
Wij .
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Recap: Cuts as Vectors

I Cut Vectors: For every partition (A, B) of the vertices, we
can associate a vector vAB. The entries of vAB will be +1 on
A and ≠1 on B.
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Recap: The Minimum Balanced Cut

Some simple tedious algebra shows the following:

cut(A, B) = 1
4vT

AB(D ≠ W )vAB.

So if we want to find the minimum balanced cut we can instead
solve the following problem:

arg min
v

vT (D ≠ W )v

I Entries of v are all {+1, ≠1} (so it is a cut vector).
I Entries of v sum to 0 (so it is balanced).
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The Graph Laplacian

The matrix:

L = D ≠ W,

is called the Graph Laplacian.
I The graph Laplacian is a very important matrix in

understanding graphs (arises naturally in partitioning
problems, understanding random walks on graphs,
understanding flow and congestion in graphs. . .).

10

in



An example
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Properties of the Graph Laplacian

It is a symmetric, real-valued matrix, so it has an
eigendecomposition. We have already seen that for any vector v:

vT Lv = 1
2

nÿ

i=1

nÿ

j=1
Wij(v(i) ≠ v(j))2 Ø 0,

so all its eigenvalues are positive.

Intuition: Which vectors v will have large value for vT Lv?
Which ones will have small value for vT Lv?
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Spectrum of the Graph Laplacian

I All the eigenvalues of the Laplacian are positive.
I The vector v = [1, 1, . . . , 1]T (you can normalize it if you

prefer) is an eigenvector of the graph Laplacian, with
eigenvalue 0. To see this we just have to check:

Lv =

I This means that all other eigenvectors vj must satisfy the
condition that:

vj ◊

S

WWWWU

1
1
...
1

T

XXXXV
= .

So every other eigenvector is “balanced”.
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The point so far

We want to find a good balanced cut. We have seen that this is
the same as finding a vector v which minimizes:

min
v

vT (D ≠ W )v,

where v satisfies two conditions:
I Its entries are +1 and ≠1 (so it defines a cut).
I Its entries sum to 0 (so that the cut is balanced):

nÿ

i=1
v(i) = 0.
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Basic Spectral Clustering

We want to solve the (computationally di�cult) problem:
min

v
vT (D ≠ W )v,

where v satisfies two conditions:
I Its entries are +1 and ≠1 (so it defines a partition).
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.

Instead we will solve the relaxation:
min

v
vT (D ≠ W )v,

where v satisfies one condition:
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.
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Basic Spectral Clustering

Instead we will solve the relaxation:

min
v

vT (D ≠ W )v,

where v satisfies one condition:
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.

The solution is just the second smallest eigenvector of the
Laplacian (easy to compute). However, we now have a problem.

And a solution:

16

Entries of v2 are not 11 or t

EA Udi o

B VID to



Algorithm

If we want to cluster our data into two clusters we will follow these
steps:

I Build a (weighted) graph on the data points (in one of three
ways).

I Construct the graph Laplacian matrix, i.e. compute the
matrix D ≠ W .

I Find its second-smallest eigenvector v2.
I Threshold its entries to find the clusters, i.e. take

A = {i : v2(i) > 0}, and B = {i : v2(i) Æ 0}.

The second smallest eigenvector of the Laplacian has its own name
(Fiedler vector).
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Some Examples

How do we cluster into more than 2 clusters? 18
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Algorithm for clustering into k-clusters

If we want to cluster our data into k-clusters we will follow these
steps:

I Build a (weighted) graph on the data points (in one of three
ways).

I Construct the graph Laplacian matrix, i.e. compute the
matrix D ≠ W .

I Find its smallest k eigenvectors {v1, v2, . . . , vk}, put them in
a matrix V œ Rn◊k.

I Interpret the rows of V as our data points. Run k-means on
this data to find k-clusters.

Might seem a bit mysterious: Why is this better than running
k-means on the original data?
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The Spectral Embedding

Just some intuition through pictures:

Key point: The spectral embedding (i.e. using the eigenvectors
of the Laplacian as the data points) tends to separate clusters very
well. k-means on the embedding performs much better than
k-means on the original data.
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Why does this happen?

Let us first consider a simple case for clustering graphs. Suppose
our graph has three separate connected components:

What does the adjacency matrix look like? What about the
Laplacian?

Is there an easy clustering algorithm in this simple case?
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Clustering disconnected graphs

So we have just argued that the Laplacian of our disconnected
graph looks like this:

What are the bottom k eigenvectors of this matrix?
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Clustering disconnected graphs

If our eigenvectors are just indicator vectors for the di�erent
clusters:

Then k-means will work well!
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Clustering in more realistic cases

In most real data analysis the graph we build will not neatly
separate into the k-clusters that we want.

I The eigenvectors of a matrix (under some natural conditions)
do not change much when you change the matrix by a small
amount.

I So if our graph approximately looks like a k-piece
disconnected graph (i.e. few edges between the pieces, and
hopefully lots of edges within the pieces) then spectral
clustering will work well.
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Spectral clustering v/s k-means

I If clusters are (well-separated) blobs: k-means will do well but
so will spectral clustering.

I If clusters are dense but have strange shapes then spectral
clustering will typically do much better.
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Spectral Clustering in Practice

I People often use the normalized Laplacian instead of the
graph Laplacian.

I The normalized Laplacian divides each entry of the Laplacian
by the square root of the degrees of the two corresponding
nodes, i.e.:

Lnormalized = D≠1/2LD≠1/2.

So,

Lnormalized(i, j) = L(i, j)


didj
.

The normalized Laplacian has many of the same properties as
the graph Laplacian but tends to give better clusters in
practice.

I The rest of the algorithm is identical (compute the bottom k
eigenvectors and run k-means on them).
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Spectral Clustering in Practice

I The algorithm now has more tuning parameters than k-means.
1. The number of clusters k: In the ideal case, we know we

should have k eigenvalues close to 0, and the k + 1 eigenvalue
should be large. So in practice we often look for the first large
gap in the eigenvalues. Roughly,

kú = arg max
k

|⁄k ≠ ⁄k+1|.

2. The choice of the similarity graph: Need to choose
between k-NN similarity, ‘-neighborhood and weighted. In
practice, the k-NN graph often works well (and is a good
starting point). It also gives us a sparse graph (which is useful
computationally).

3. The choice of k in the k-NN graph: Again, a very hard
question to answer. Often the heuristic is to make sure k is
large enough so that the resulting graph has very few
disconnected components. (If the graph has many
disconnected components then spectral clustering just returns
some subset of those components.)
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Back to data visualization and PCA

X = U ◊ D ◊ V T .

A curious fact:
I Recall, that in order to visualize data using PCA, all we

needed we the principal component scores (i.e. the things in
the matrix U ◊ D). Why?

I Suppose instead of giving you the matrix X (i.e. the data) I
only gave you the matrix XT X. Could you still “visualize” the
data?

I How about if I gave you the matrix XXT ?
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The matrix XXT

I The matrix XXT is called the inner-product matrix. Why?

I Our curious fact in words: We can visualize the data even
without having the original data. Using PCA (or an
eigendecomposition) we can go from similarities to a
meaningful point cloud.
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