
Unsupervised Statistical Learning:

Clustering Graphs

Siva Balakrishnan
Data Mining: 36-462/36-662

April 4th, 2019

1

Outline for Today

I Recap: Graphs and Clustering Graphs
I Spectral clustering
I Multi-dimensional scaling (MDS) (just an introduction)

2

Recap: Graphs

It is often convenient and useful to think about data in terms of
graphs.

I (Unweighted) Graphs: Just vertices and edges. Equivalent
to every edge having weight 1.

I Weighted Graphs: Each edge, say between vertices i and j,
has weight wij .

For us, graphs will usually be undirected (i.e. the edges do not
have an orientation), and weights will usually be positive.

3

yall edgeshavent I

Recap: From Data to Graphs

We are given our usual collection of data points {X1, . . . , Xn}.
How do we build a graph from these?
Roughly:

1. Nodes: These are the data points.
2. Edges/Weights: We want to connect points that are

similar. Weights will measure “similarity”.

4

Recap: From Data to Graphs

Three canonical ways:
I ‘-neighborhood graph:

I k-NN graph:

I Weighted similarity graph:

5

unweighted
connect i j if

llxi xjlb.EE
if either Xi is one of Xj's

K nearest neighbors or vice versa

r fully connected

wig exp llxixs.lk

Recap: Clustering Graphs

First Attempt: Find best cut, i.e.:

min
A,B

cut(A, B) = min
A,B

ÿ

iœA,jœB

wij .

Does poorly in practice.

Second Attempt: Find best balanced cut:

min
A,B of equal size

cut(A, B).

Does very well in practice. However, hard to compute. Spectral
clustering is a fast, approximate way to find a balanced cut.

6

min
out A f

0 3

Recap: Graphs as Matrices

I Adjacency Matrix: We can just collect the weights Wij into
a (symmetric) matrix W . This is called the adjacency matrix.

I Degree Matrix: The degree of a node is the sum of the
weights of the edges connected to that node. We can collect
the degrees in a diagonal matrix D, where

Dii =
nÿ

j=1
Wij .

7

put all edge
cuts into

a matrix WEIN

Oded
g sumaesewts degli

Recap: Cuts as Vectors

I Cut Vectors: For every partition (A, B) of the vertices, we
can associate a vector vAB. The entries of vAB will be +1 on
A and ≠1 on B.

8

V E IR

iiiiii fi

B

cutCA131 5

Recap: The Minimum Balanced Cut

Some simple tedious algebra shows the following:

cut(A, B) = 1
4vT

AB(D ≠ W)vAB.

So if we want to find the minimum balanced cut we can instead
solve the following problem:

arg min
v

vT (D ≠ W)v

I Entries of v are all {+1, ≠1} (so it is a cut vector).
I Entries of v sum to 0 (so it is balanced).

9

out vector
corresponding
to A B

I r
v daefinues

The Graph Laplacian

The matrix:

L = D ≠ W,

is called the Graph Laplacian.
I The graph Laplacian is a very important matrix in

understanding graphs (arises naturally in partitioning
problems, understanding random walks on graphs,
understanding flow and congestion in graphs. . .).

10

in

An example

11

T

w 8
O

f D AN

Properties of the Graph Laplacian

It is a symmetric, real-valued matrix, so it has an
eigendecomposition. We have already seen that for any vector v:

vT Lv = 1
2

nÿ

i=1

nÿ

j=1
Wij(v(i) ≠ v(j))2 Ø 0,

so all its eigenvalues are positive.

Intuition: Which vectors v will have large value for vT Lv?
Which ones will have small value for vT Lv?

12t
I

15

out
4541

iv II

full VC 3 f

I 1 I t's

T IR utLv will be large

Spectrum of the Graph Laplacian

I All the eigenvalues of the Laplacian are positive.
I The vector v = [1, 1, . . . , 1]T (you can normalize it if you

prefer) is an eigenvector of the graph Laplacian, with
eigenvalue 0. To see this we just have to check:

Lv =

I This means that all other eigenvectors vj must satisfy the
condition that:

vj ◊

S

WWWWU

1
1
...
1

T

XXXXV
= .

So every other eigenvector is “balanced”.
13

D wtf 18g

Tt

O

q
Is eigenvectors anet

The point so far

We want to find a good balanced cut. We have seen that this is
the same as finding a vector v which minimizes:

min
v

vT (D ≠ W)v,

where v satisfies two conditions:
I Its entries are +1 and ≠1 (so it defines a cut).
I Its entries sum to 0 (so that the cut is balanced):

nÿ

i=1
v(i) = 0.

14

Basic Spectral Clustering

We want to solve the (computationally di�cult) problem:
min

v
vT (D ≠ W)v,

where v satisfies two conditions:
I Its entries are +1 and ≠1 (so it defines a partition).
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.

Instead we will solve the relaxation:
min

v
vT (D ≠ W)v,

where v satisfies one condition:
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.

15

C

f

of t

Basic Spectral Clustering

Instead we will solve the relaxation:

min
v

vT (D ≠ W)v,

where v satisfies one condition:
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.

The solution is just the second smallest eigenvector of the
Laplacian (easy to compute). However, we now have a problem.

And a solution:

16

Entries of v2 are not 11 or t

EA Udi o

B VID to

Algorithm

If we want to cluster our data into two clusters we will follow these
steps:

I Build a (weighted) graph on the data points (in one of three
ways).

I Construct the graph Laplacian matrix, i.e. compute the
matrix D ≠ W .

I Find its second-smallest eigenvector v2.
I Threshold its entries to find the clusters, i.e. take

A = {i : v2(i) > 0}, and B = {i : v2(i) Æ 0}.

The second smallest eigenvector of the Laplacian has its own name
(Fiedler vector).

17

Some Examples

How do we cluster into more than 2 clusters? 18

r

quite

I

do means

µ 3

Algorithm for clustering into k-clusters

If we want to cluster our data into k-clusters we will follow these
steps:

I Build a (weighted) graph on the data points (in one of three
ways).

I Construct the graph Laplacian matrix, i.e. compute the
matrix D ≠ W .

I Find its smallest k eigenvectors {v1, v2, . . . , vk}, put them in
a matrix V œ Rn◊k.

I Interpret the rows of V as our data points. Run k-means on
this data to find k-clusters.

Might seem a bit mysterious: Why is this better than running
k-means on the original data?

19

speged
Wedding

d d

L E IR ftp.dxd
w d

notquite Xxt XTX
butcloserto

The Spectral Embedding

Just some intuition through pictures:

Key point: The spectral embedding (i.e. using the eigenvectors
of the Laplacian as the data points) tends to separate clusters very
well. k-means on the embedding performs much better than
k-means on the original data.

20

mo
I M 0

I
1

a

Why does this happen?

Let us first consider a simple case for clustering graphs. Suppose
our graph has three separate connected components:

What does the adjacency matrix look like? What about the
Laplacian?

Is there an easy clustering algorithm in this simple case?

21

1 f It
easy pastries

wt

Clustering disconnected graphs

So we have just argued that the Laplacian of our disconnected
graph looks like this:

What are the bottom k eigenvectors of this matrix?

22

I

V

t
IE

I

reign

Clustering disconnected graphs

If our eigenvectors are just indicator vectors for the di�erent
clusters:

Then k-means will work well!

23

cluster 1 Cluster2 Cluster K

I t.io

this is like picture on slide 20

Clustering in more realistic cases

In most real data analysis the graph we build will not neatly
separate into the k-clusters that we want.

I The eigenvectors of a matrix (under some natural conditions)
do not change much when you change the matrix by a small
amount.

I So if our graph approximately looks like a k-piece
disconnected graph (i.e. few edges between the pieces, and
hopefully lots of edges within the pieces) then spectral
clustering will work well.

24

Spectral clustering v/s k-means

I If clusters are (well-separated) blobs: k-means will do well but
so will spectral clustering.

I If clusters are dense but have strange shapes then spectral
clustering will typically do much better.

25

Spectral Clustering in Practice

I People often use the normalized Laplacian instead of the
graph Laplacian.

I The normalized Laplacian divides each entry of the Laplacian
by the square root of the degrees of the two corresponding
nodes, i.e.:

Lnormalized = D≠1/2LD≠1/2.

So,

Lnormalized(i, j) = L(i, j)

didj
.

The normalized Laplacian has many of the same properties as
the graph Laplacian but tends to give better clusters in
practice.

I The rest of the algorithm is identical (compute the bottom k
eigenvectors and run k-means on them).

26

f importantwill use inthat

Spectral Clustering in Practice

I The algorithm now has more tuning parameters than k-means.
1. The number of clusters k: In the ideal case, we know we

should have k eigenvalues close to 0, and the k + 1 eigenvalue
should be large. So in practice we often look for the first large
gap in the eigenvalues. Roughly,

kú = arg max
k

|⁄k ≠ ⁄k+1|.

2. The choice of the similarity graph: Need to choose
between k-NN similarity, ‘-neighborhood and weighted. In
practice, the k-NN graph often works well (and is a good
starting point). It also gives us a sparse graph (which is useful
computationally).

3. The choice of k in the k-NN graph: Again, a very hard
question to answer. Often the heuristic is to make sure k is
large enough so that the resulting graph has very few
disconnected components. (If the graph has many
disconnected components then spectral clustering just returns
some subset of those components.)

27

Iii

zeros

Back to data visualization and PCA

X = U ◊ D ◊ V T .

A curious fact:
I Recall, that in order to visualize data using PCA, all we

needed we the principal component scores (i.e. the things in
the matrix U ◊ D). Why?

I Suppose instead of giving you the matrix X (i.e. the data) I
only gave you the matrix XT X. Could you still “visualize” the
data?

I How about if I gave you the matrix XXT ?

28

The matrix XXT

I The matrix XXT is called the inner-product matrix. Why?

I Our curious fact in words: We can visualize the data even
without having the original data. Using PCA (or an
eigendecomposition) we can go from similarities to a
meaningful point cloud.

29

