Unsupervised Statistical Learning: Clustering Graphs

> Siva Balakrishnan Data Mining: 36-462/36-662

> > April 2nd, 2019

1

Outline for Today

- ▶ Solving HW6, Problem 1 (quickly)
- \blacktriangleright Recap: Mixture Models
- \blacktriangleright Representing datasets as graphs
- \blacktriangleright Clustering graphs
- \blacktriangleright Spectral clustering

In class:
$$
v^T \hat{\Sigma} \hat{v}
$$
 for any unit vector v .
\n
$$
arg max_{||v||_{\Delta}} v^T \hat{\Sigma} \hat{v} = V_1
$$
\n
$$
arg max_{||v||_{\Delta}} v^T \hat{\Sigma} \hat{v} = V_1
$$
\n
$$
V_1^T \hat{\Sigma} \hat{v} = V_1^T \sum_{i=1}^{N} \gamma_i v_i v_i^T V_i
$$
\n
$$
V_1^T \hat{\Sigma} \hat{v} = V_1^T \sum_{i=1}^{N} \gamma_i v_i v_i^T V_i
$$
\n
$$
= \sum_{i=1}^{N} \gamma_i (v_i^T v_i)^2 \sum_{v_i=1}^{N} \sum_{v_j=1}^{N} \sum_{v_j=1
$$

 $V = \sum_{u} \alpha_i V_i$
 $V = \sum_{i=1}^d \alpha_i V_i$
 $V = \sum_{i=1}^d \alpha_i V_i$
 $V = \sum_{i=1}^d \alpha_i^2 N_i$
 $\leq \lambda_1 \times \sum_{i=1}^d \alpha_i^2$ $3.1.$

Recap: Mixture Models Motivation

I We wanted to fix two significant problems with *K*-means clustering:

- It is a "hard" clustering method, i.e. each point gets assigned to a single cluster and so deals badly with overlapping clusters.
- It can also do poorly in cases where the clusters have non-spherical shapes.

▶ **Bonus:** Perhaps incorporate a bit more "statistical modeling" into clustering.

Recap: Mixture Models

- \triangleright Want to roughly imagine the case, where each cluster has a different distribution.
- \blacktriangleright The generative model we are imagining is:
	- ▶ We first choose a cluster by drawing $Z \sim \{1, \ldots, K\}$.
	- \triangleright We then draw a sample from the distribution corresponding to cluster *Z*.

However, we are not shown the *Z* values (the cluster labels).

▶ This is called a *mixture model*:

$$
f(x) = \sum_{k=1}^{K} \mathbb{P}(Z = k) p(x | Z = k) = \sum_{k=1}^{K} \lambda_k f_Z(x).
$$

Recap: Gaussian Mixture Models

Recap: Clustering with a Mixture Model

In Suppose someone handed us a mixture model. How would we "soft" cluster our data? For a point *x* we would compute for $i \in \{1, \ldots, K\}$: $P(Z = i | X = x) =$ Main question: given data how do we estimate the mixture parameters? -" clustering. $2i f(x)$ rule

Recap: Estimating a Mixture Model – Expectation-Maximization

 \triangleright EM is a general method for (approximately) maximizing the (marginal) likelihood when you have missing data. We won't get too much into the details but describe the EM algorithm for GMMs directly.

- \blacktriangleright Roughly, we want to first "guess" the latent variables Z_i and then if we knew those we could just maximize the (usual/complete) likelihood.
- It resembles k -means. Except instead of assigning each point to a single cluster we "softly" assign them so they contribute fractionally to each cluster.

Recap: Estimating a Mixture Model – Expectation-Maximization

 \blacktriangleright We initialize the parameters $(\lambda_k, \mu_k, \Sigma_k)_{k=1}^K$ randomly, and then alternate the following two steps:

1. **E-step:** We compute the cluster memberships for each point

Soltzian men
\n*P*(*Z_i* = *k*|*X_i*) =
$$
\frac{\lambda_k \phi_k(X_i; \mu_k, \Sigma_k)}{\sum_{j=1}^K \lambda_j \phi_j(X_i; \mu_j, \Sigma_j)}
$$
\nas before.
\n2. M-step: Recompute the parameters:

$$
\lambda_k = \frac{\sum_{i=1}^n P(Z_i = k | X_i)}{n},
$$

$$
\mu_k = \frac{\sum_{i=1}^n P(Z_i = k | X_i) X_i}{\sum_{i=1}^n P(Z_i = k | X_i)},
$$

and similarly update the covariance matrix.

Graphs and Weighted Graphs

It is often convenient and useful to think about data in terms of graphs.

- **(Unweighted) Graphs:** Just vertices and edges. Equivalent to every edge having weight 1.
- \blacktriangleright Weighted Graphs: Each edge, say between vertices i and j , has weight w_{ij} . $\longrightarrow \bigcap$ \longrightarrow **Vertices**

edge

 $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ 10

 V_{3}

10

 V_{4}

For us, graphs will usually be **undirected** (i.e. the edges do not have an orientation), and weights will usually be positive. $2\}$. $\sqrt{\frac{all \ wts \ avt}}$

 \mathbf{V}_4

Graphs from Data

We are given our usual collection of data points $\{X_1, \ldots, X_n\}$. How do we build a graph from these? Roughly:

- **1. Nodes:** These are the data points.
	- 2. **Edges/Weights:** We want to connect points that are similar. Weights will measure "similarity".

Data Surfaces and Similarities

Why are we building graphs? Two answers:

- 1. Gives us a new way to think about data, and come up with algorithms (we'll see a few examples).
- 2. We don't trust the Euclidean distance. We want the geometry of our data to inform our notion of similarity.

Three canonical ways: \mathbf{K} **hearest neighbor graph:** Connect (i, j) if either X_i is one of X_i 's k-nearest neighbors or if X_i is one of X_i 's k-nearest neighbors.

How do we build graphs?

2 tuning parameter.

How do we build graphs?

Three canonical ways:

Back to Clustering

Now that we have built a graph from our data – we can solve many statistical learning problems (classification, regression, clustering) using the graph. Suppose we wanted to cluster our data (for now, into 2 clusters).

▶ We want to *partition* our graph into two pieces. \blacktriangleright Hopefully cut as few edges as possible (or minimize the Hopefully cut as few edges as
weight of the edges we cut).

 $\textsf{cut}(A, B) = \sum$

Formally, if we have a graph G , we partition the vertices into two sets *A* and *B*. The cost of the partition is: n vertices

For an unweighted graph, the cost is just the number of edges we ror an anweighted graph, the cost is just the humber of edges.
cut. Just like in *k*-means - we can try to find the best partition, i.e. the one that cuts the fewest edges. A to be

*i*œ*A,j*œ*B*

 w_{ij} .

 \mathcal{L}

Graph Partitioning

Find best cut:

$$
\operatorname{cut}(A,B) = \sum_{i \in A, j \in B} w_{ij}.
$$

Good news: There is a fast algorithm that solves this problem and finds the best cut.

Bad news: Usually does terribly in practice. Often just splits o "whiskers".

Balanced Partitions

One alternative is to try to find a balanced cut, i.e.:

$$
\min_{A,B \text{ of equal size}} \text{cut}(A,B).
$$

- \triangleright You can also imagine variants where you force both clusters to be big (but not necessarily half the vertices) and so on.
- \blacktriangleright Turns out that this problem is difficult to solve computationally.
- **Spectral clustering algorithms will give us a way to** approximately solve such "balanced partitioning" problems.

Spectral clustering methods are basically "eigenvector-based" methods for clustering. How do cuts and eigenvectors relate?

Cuts as Vectors

 \triangleright **Cut Vectors:** For every partition (A, B) of the vertices, we can associate a vector v_{AB} . The entries of v_{AB} will be $+1$ on A and -1 on B .

Cuts and Matrices

Our goal for the next few slides is to understand the following relations:

$$
\frac{\text{cut}(A, B)}{\sqrt{\sum_{i=1}^{i\in A, j\in B} W_{ij}}} = \frac{1}{8} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (v_{AB}(i) - v_{AB}(j))^2
$$
\n
$$
\frac{\sum_{i=1}^{i\in A, j\in B} u_{j\in A}}{\frac{1}{4} v_{AB}^T (D - W) v_{AB}}.
$$
\n\nThe second equality:
\n
$$
\text{Suppose } \text{lim } \text{Vol}(i) = \text{Vol}(i) = \text{Vol}(i)
$$
\n
$$
\text{vol}(i) = -1
$$

22

Any cut: (A, B)
cut $(A, B) = \frac{1}{4} V_{AB}^{T} (D -$ AB. Graph Laplacian. find good ut JV.

Cuts and Matrices

The other equality is a bit more difficult, but just algebra (we are going to skip this). For any vector *v*:

$$
v^{T}(D - W)v = v^{T}Dv - v^{T}Wv = \sum_{i=1}^{n} v(i)^{2}d_{ii} - \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}v(i)v(j)
$$

$$
= \sum_{i=1}^{n} v(i)^{2} \sum_{j=1}^{n} W_{ij} - \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}v(i)v(j)
$$

$$
= \frac{1}{2} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} v(i)^{2}W_{ij} - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}v(i)v(j) + \sum_{i=1}^{n} \sum_{j=1}^{n} v(j)^{2}W_{ij} \right]
$$

$$
= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}(v(i) - v(j))^{2}.
$$

The point so far

We want to find a good balanced cut. We have seen that this is the same as finding a vector *v* which minimizes:

$$
\min_{v} v^T (D - W) v,
$$

where *v* satisfies two conditions:

- Its entries are $+1$ and -1 (so it defines a partition).
- Its entries sum to 0 (so that the partition is balanced):

$$
\sum_{i=1}^{n} v(i) = 0.
$$

The Graph Laplacian

The matrix:

$$
L=D-W,
$$

is called the *Graph Laplacian*.

 \triangleright The graph Laplacian is a very important matrix in understanding graphs (arises naturally in partitioning problems, understanding random walks on graphs, understanding flow and congestion in graphs*...*).

It is a symmetric, real valued matrix, so it has an eigendecomposition. We have already seen that for any vector *v*:

$$
v^{T}Lv = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}(v(i) - v(j))^{2} \ge 0,
$$

so all its eigenvalues are positive.

Spectrum of the Graph Laplacian

- \triangleright All the eigenvalues of the Laplacian are positive.
- The vector $v = [1, 1, \ldots, 1]^T$ (you can normalize it if you prefer) is an eigenvector of the graph Laplacian, with eigenvalue 0. To see this we just have to check:

$Lv =$

 \blacktriangleright This means that all other eigenvectors v_j must satisfy the condition that:

$$
v_j \times \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \qquad .
$$

So every other eigenvector is "balanced".

Basic Spectral Clustering

We want to solve the (computationally difficult) problem:

$$
\min_{v} v^{T}(D - W)v,
$$

where *v* satisfies two conditions:

- Its entries are $+1$ and -1 (so it defines a partition).
- Its entries sum to 0 (so that the partition is balanced):

$$
\sum_{i=1}^{n} v(i) = 0.
$$

Instead we will solve the relaxation:

$$
\min_{v} v^T (D - W) v,
$$

where *v* satisfies **one** condition:

Its entries sum to 0 (so that the partition is balanced):

n

$$
\sum_{i=1}^{n} v(i) = 0.
$$

Basic Spectral Clustering

Instead we will solve the relaxation:

$$
\min_{v} v^T (D - W) v,
$$

where *v* satisfies **one** condition:

Its entries sum to 0 (so that the partition is balanced):

$$
\sum_{i=1}^{n} v(i) = 0.
$$

The solution is just the second smallest eigenvector of the Laplacian (easy to compute). However, we now have a problem.

And a solution:

Algorithm

If we want to cluster our data into two clusters we will follow these steps:

- \triangleright Build a (weighted) graph on the data points (in one of three ways).
- \triangleright Construct the graph Laplacian matrix, i.e. compute the matrix $D - W$.
- \blacktriangleright Find its second-smallest eigenvector v_2 .
- \blacktriangleright Threshold its entries to find the clusters, i.e. take $A = \{i : v(i) \geq 0\}$, and $B = \{i : v(i) < 0\}$.

Some Examples

How do we cluster into more than 2 clusters? 30