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Outline for Today

I Solving HW6, Problem 1 (quickly)
I Recap: Mixture Models
I Representing datasets as graphs
I Clustering graphs
I Spectral clustering
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HW6, Problem 1
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Recap: Mixture Models Motivation

I We wanted to fix two significant problems with K-means
clustering:

I It is a “hard” clustering method, i.e. each point gets assigned
to a single cluster and so deals badly with overlapping clusters.

I It can also do poorly in cases where the clusters have
non-spherical shapes.

I Bonus: Perhaps incorporate a bit more “statistical
modeling” into clustering.
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Recap: Mixture Models

I Want to roughly imagine the case, where each cluster has a
di�erent distribution.

I The generative model we are imagining is:
I We first choose a cluster by drawing Z ≥ {1, . . . , K}.
I We then draw a sample from the distribution corresponding to

cluster Z.
However, we are not shown the Z values (the cluster labels).

I This is called a mixture model:

f(x) =
Kÿ

k=1
P(Z = k)p(x|Z = k) =

Kÿ

k=1
⁄kfZ(x).
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Recap: Gaussian Mixture Models

I Model: ⁄1, ⁄2, ⁄3 and
fred(x) = N(µred, �red),

fblue(x) = N(µblue, �blue),
fgreen(x) = N(µgreen, �green),
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Recap: Clustering with a Mixture Model

I Suppose someone handed us a mixture model. How would we
“soft” cluster our data?

I For a point x we would compute for i œ {1, . . . , K}:

P (Z = i|X = x) =

Main question: given data how do we estimate the mixture
parameters?
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Recap: Estimating a Mixture Model –
Expectation-Maximization

I EM is a general method for (approximately) maximizing the
(marginal) likelihood when you have missing data. We won’t
get too much into the details but describe the EM algorithm
for GMMs directly.

I Roughly, we want to first “guess” the latent variables Zi and
then if we knew those we could just maximize the
(usual/complete) likelihood.

I It resembles k-means. Except instead of assigning each point
to a single cluster we “softly” assign them so they contribute
fractionally to each cluster.
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Recap: Estimating a Mixture Model –
Expectation-Maximization

I We initialize the parameters (⁄k, µk, �k)K
k=1 randomly, and

then alternate the following two steps:
1. E-step: We compute the cluster memberships for each point

i:

P (Zi = k|Xi) = ⁄k„k(Xi; µk, �k)
qK

j=1 ⁄j„j(Xi; µj , �j)

as before.
2. M-step: Recompute the parameters:

⁄k =
qn

i=1 P (Zi = k|Xi)
n

,

µk =
qn

i=1 P (Zi = k|Xi)Xiqn
i=1 P (Zi = k|Xi)

,

and similarly update the covariance matrix.
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Recap: Estimating a Mixture Model – EM in Action
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Graphs and Weighted Graphs
It is often convenient and useful to think about data in terms of
graphs.

I (Unweighted) Graphs: Just vertices and edges. Equivalent
to every edge having weight 1.

I Weighted Graphs: Each edge, say between vertices i and j,
has weight wij .

For us, graphs will usually be undirected (i.e. the edges do not
have an orientation), and weights will usually be positive.
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Graphs from Data
We are given our usual collection of data points {X1, . . . , Xn}.
How do we build a graph from these?
Roughly:

1. Nodes: These are the data points.
2. Edges/Weights: We want to connect points that are

similar. Weights will measure “similarity”.
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Data Surfaces and Similarities
Why are we building graphs? Two answers:

1. Gives us a new way to think about data, and come up with
algorithms (we’ll see a few examples).

2. We don’t trust the Euclidean distance. We want the geometry
of our data to inform our notion of similarity.

How similar are points?
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How do we build graphs?

Three canonical ways:
I ‘-neighborhood graph: Connect every pair of points (i, j)

for which ÎXi ≠ XjÎ2 Æ ‘.
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How do we build graphs?

Three canonical ways:
I k-nearest neighbor graph: Connect (i, j) if either Xi is one

of Xj ’s k-nearest neighbors or if Xj is one of Xi’s k-nearest
neighbors.
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How do we build graphs?
Three canonical ways:

I Weighted Euclidean Distance graph: Connect (i, j) with
weight:

wij = exp(≠ÎXi ≠ XjÎ2
2/‡2),

for some bandwidth ‡.
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Back to Clustering
Now that we have built a graph from our data – we can solve
many statistical learning problems (classification, regression,
clustering) using the graph. Suppose we wanted to cluster our
data (for now, into 2 clusters).

I We want to partition our graph into two pieces.
I Hopefully, cut as few edges as possible (or minimize the

weight of the edges we cut).

Formally, if we have a graph G, we partition the vertices into two
sets A and B. The cost of the partition is:

cut(A, B) =
ÿ

iœA,jœB

wij .

For an unweighted graph, the cost is just the number of edges we
cut. Just like in k-means - we can try to find the best partition,
i.e. the one that cuts the fewest edges.
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Graph Partitioning
Find best cut:

cut(A, B) =
ÿ

iœA,jœB

wij .

Good news: There is a fast algorithm that solves this problem and
finds the best cut.
Bad news: Usually does terribly in practice. Often just splits o�
“whiskers”.

Want to encourage our clustering algorithm to find big clusters.
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Balanced Partitions

One alternative is to try to find a balanced cut, i.e.:

min
A,B of equal size

cut(A, B).

I You can also imagine variants where you force both clusters to
be big (but not necessarily half the vertices) and so on.

I Turns out that this problem is di�cult to solve
computationally.

I Spectral clustering algorithms will give us a way to
approximately solve such “balanced partitioning” problems.

Spectral clustering methods are basically “eigenvector-based”
methods for clustering. How do cuts and eigenvectors relate?
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Graphs as Matrices
I Adjacency Matrix: We can just collect the weights Wij into

a (symmetric) matrix W . This is called the adjacency matrix.

I Degree Matrix: The degree of a node is the sum of the
weights of the edges connected to that node. We can collect
the degrees in a diagonal matrix D, where

Dii =
nÿ

j=1
Wij .
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Cuts as Vectors

I Cut Vectors: For every partition (A, B) of the vertices, we
can associate a vector vAB. The entries of vAB will be +1 on
A and ≠1 on B.
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Cuts and Matrices

Our goal for the next few slides is to understand the following
relations:

cut(A, B) =
ÿ

iœA,jœB

Wij = 1
8

nÿ

i=1

nÿ

j=1
Wij(vAB(i) ≠ vAB(j))2

= 1
4vT

AB(D ≠ W )vAB.

The second equality:
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Cuts and Matrices
The other equality is a bit more di�cult, but just algebra (we are
going to skip this). For any vector v:

vT (D ≠ W )v = vT Dv ≠ vT Wv =
nÿ

i=1
v(i)2dii ≠

nÿ

i=1

nÿ

j=1
Wijv(i)v(j)

=
nÿ

i=1
v(i)2

nÿ

j=1
Wij ≠

nÿ

i=1

nÿ

j=1
Wijv(i)v(j)

= 1
2

S

U
nÿ

i=1

nÿ

j=1
v(i)2Wij ≠ 2

nÿ

i=1

nÿ

j=1
Wijv(i)v(j)

+
nÿ

i=1

nÿ

j=1
v(j)2Wij

T

V

= 1
2

nÿ

i=1

nÿ

j=1
Wij(v(i) ≠ v(j))2.
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The point so far

We want to find a good balanced cut. We have seen that this is
the same as finding a vector v which minimizes:

min
v

vT (D ≠ W )v,

where v satisfies two conditions:
I Its entries are +1 and ≠1 (so it defines a partition).
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.
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The Graph Laplacian
The matrix:

L = D ≠ W,

is called the Graph Laplacian.
I The graph Laplacian is a very important matrix in

understanding graphs (arises naturally in partitioning
problems, understanding random walks on graphs,
understanding flow and congestion in graphs. . .).

It is a symmetric, real valued matrix, so it has an
eigendecomposition. We have already seen that for any vector v:

vT Lv = 1
2

nÿ

i=1

nÿ

j=1
Wij(v(i) ≠ v(j))2 Ø 0,

so all its eigenvalues are positive.
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Spectrum of the Graph Laplacian
I All the eigenvalues of the Laplacian are positive.
I The vector v = [1, 1, . . . , 1]T (you can normalize it if you

prefer) is an eigenvector of the graph Laplacian, with
eigenvalue 0. To see this we just have to check:

Lv =

I This means that all other eigenvectors vj must satisfy the
condition that:

vj ◊

S

WWWWU

1
1
...
1

T

XXXXV
= .

So every other eigenvector is “balanced”.
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Basic Spectral Clustering
We want to solve the (computationally di�cult) problem:

min
v

vT (D ≠ W )v,

where v satisfies two conditions:
I Its entries are +1 and ≠1 (so it defines a partition).
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.

Instead we will solve the relaxation:
min

v
vT (D ≠ W )v,

where v satisfies one condition:
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.
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Basic Spectral Clustering

Instead we will solve the relaxation:

min
v

vT (D ≠ W )v,

where v satisfies one condition:
I Its entries sum to 0 (so that the partition is balanced):

nÿ

i=1
v(i) = 0.

The solution is just the second smallest eigenvector of the
Laplacian (easy to compute). However, we now have a problem.

And a solution:
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Algorithm

If we want to cluster our data into two clusters we will follow these
steps:

I Build a (weighted) graph on the data points (in one of three
ways).

I Construct the graph Laplacian matrix, i.e. compute the
matrix D ≠ W .

I Find its second-smallest eigenvector v2.
I Threshold its entries to find the clusters, i.e. take

A = {i : v(i) Ø 0}, and B = {i : v(i) < 0}.
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Some Examples

How do we cluster into more than 2 clusters? 30


