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Project Updates

1. Release date: First week of April.
2. Deliverables:

I Predictions due: April 30th.
I Final report due: May 3rd.

3. Teams: You can do projects individually or in teams of 2
(preferable). If you want me to (randomly) pair you with
another person use this google doc. I will do this on April 5th
at midnight (after the release of the project).

https://docs.google.com/document/d/

1HkWV112R8XR1mCDBJ6RHlxACRY25PB7zwzbj4tbDt_g/

edit?usp=sharing

2



Recap: K-medoids

I Just like K-means except we want the centers c1, . . . , cK to
be actual data points.

I Initial guess for centers c1, . . . cK (e.g., randomly select K of
the points X1, . . . Xn), then repeat:

1. Minimize over C: for each i = 1, . . . n, find the cluster center
ck closest to Xi, and let C(i) = k

2. Minimize over c1, . . . cK : for each k = 1, . . . K, let ck = X
ú
k
,

the medoid of points in cluster k, i.e., the point Xi in cluster k

that minimizes
q

C(j)=k
ÎXj ≠ XiÎ2

2

Stop when within-cluster variation doesn’t change
I Advantages over K-means:
I Disadvantages relative to K-means:
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Recap: Hierarchical Clustering

I Want to produce a sequence of nested clusters. No need to
specify K anymore.

I Two broad strategies: agglomerative and divisive.
I Represent hierarchical clusters by a dendrogram: cut

horizontally to get clusters, and heights tell us about
(dis)similarities, groups that merge near the bottom are quite
similar.

●

●

●

●

●
●

●

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
2

0.
4

0.
6

0.
8

Dimension 1

D
im

en
si

on
 2

1

2
3

4

5
6

7

1 7 4 5 6 2 3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

H
ei

gh
t

4

recursive
partitioning

h O

O
3E3 3



Recap: Linkage

I To specify an agglomerative hierarchical clustering algorithm
we only specify one thing: the linkage rule. This is just a way
to assign a distance to two groups of points (usually derived
from a distance between individual points).

I The most canonical ways to do this:
1. Single Linkage:

dsingle(G, H) = min
iœG, jœH

dij

2. Complete Linkage:

dcomplete(G, H) = max
iœG, jœH

dij

3. Average Linkage:

dcomplete(G, H) = 1
nGnH

ÿ

iœG, jœH

dij
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Recap: Cut Interpretations

I Suppose we cut a (single/complete/average)-linkage
dendrogram at some height h to get clusters. Can we say
anything nice about the clusters?

I Single Linkage:

I Complete Linkage:

I Average Linkage: Nothing particularly interesting to say
here.
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Common properties

Single, complete, average linkage share the following properties:
I These linkages operate on dissimilarities dij , and don’t need

the points X1, . . . Xn to be in Euclidean space
I Running agglomerative clustering with any of these linkages

produces a dendrogram with no inversions

Second property, in words: disimilarity scores between merged
clusters only increases as we run the algorithm

Means that we can draw a proper dendrogram, where the height of
a parent is always higher than height of its daughters

7

O



Example of a dendrogram with no inversions
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Shortcomings of single, complete linkage

Single and complete linkage can have some practical problems:
I Single linkage su�ers from chaining. In order to merge two

groups, only need one pair of points to be close, irrespective
of all others. Therefore clusters can be too spread out, and
not compact enough

I Complete linkage avoids chaining, but su�ers from crowding.
Because its score is based on the worst-case dissimilarity
between pairs, a point can be closer to points in other clusters
than to points in its own cluster. Clusters are compact, but
not far enough apart

Average linkage tries to strike a balance. It uses average pairwise
dissimilarity, so clusters tend to be relatively compact and relatively
far apart
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Example of chaining and crowding
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Shortcomings of average linkage

Average linkage isn’t perfect, it has its own problems:
I It is not clear what properties the resulting clusters have when

we cut an average linkage tree at given height h. Single and
complete linkage trees each had simple interpretations

I Results of average linkage clustering can change with a
monotone increasing transformation of dissimilarities dij . I.e.,
if h is such that h(x) Æ h(y) whenever x Æ y, and if x < y

then h(x) < h(y), and we used dissimilarites h(dij) instead of
dij , then we could get di�erent answers

Depending on the context, second problem may be important or
unimportant. E.g., it could be very clear what dissimilarities should
be used, or not

Note: results of single, complete linkage clustering are unchanged
under monotone transformations
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Example of a change with monotone increasing

transformation
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Recap: hierarchical agglomerative clustering

Hierarchical agglomerative clustering: start with all data points in
their own groups, and repeatedly merge groups, based on linkage
function. Stop when points are in one group (this is agglomerative;
there is also divisive)

This produces a sequence of clustering assignments, visualized by a
dendrogram (i.e., a tree). Each node in the tree represents a group,
and its height is proportional to the dissimilarity of its daughters

Three most common linkage functions: single, complete, average
linkage. Single linkage measures the least dissimilar pair between
groups, complete linkage measures the most dissimilar pair,
average linkage measures the average dissimilarity over all pairs

Each linkage has its strengths and weaknesses
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Centroid linkage

Centroid linkage1 is commonly used. Assume that Xi œ Rp, and
dij = ÎXi ≠ XjÎ2. Let X̄G, X̄H denote group averages for G, H.
Then:

dcentroid(G, H) = ÎX̄G ≠ X̄HÎ2

Example (dissimilarities dij are
distances, groups are marked
by colors): centroid linkage
score dcentroid(G, H) is the dis-
tance between the group cen-
troids (i.e., group averages)
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1Eisen et al. (1998), “Cluster Analysis and Display of Genome-Wide
Expression Patterns”
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Centroid linkage is the standard in biology

Centroid linkage is simple: easy to understand, and easy to
implement. Maybe for these reasons, it has become the standard
for hierarchical clustering in biology
Here n = 60, Xi œ R2, dij = ÎXi ≠ XjÎ2. Cutting the tree at
some heights wouldn’t make sense ... because the dendrogram has
inversions! But we can, e.g., still look at output with 3 clusters
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Centroid Linkage Inversions
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Shortcomings of centroid linkage

I Can produce dendrograms with inversions, which really messes
up the visualization

I Even if were we lucky enough to have no inversions, still no
interpretation for the clusters resulting from cutting the tree

I Answers change with a monotone transformation of the
dissimilarity measure dij = ÎXi ≠ XjÎ2. E.g., changing to
dij = ÎXi ≠ XjÎ2

2 would give a di�erent clustering
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Linkages summary

Linkage No
inversions?

Unchanged
with monotone
transformation?

Cut
interpretation? Notes

Single X X X chaining

Complete X X X crowding

Average X ◊ ◊

Centroid ◊ ◊ ◊ simple

Note: this doesn’t tell us what “best linkage” is.

Remember that choosing a linkage can be very situation
dependent.
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More Drawbacks and More Ideas

I Let us return to K-means and attempt to address more of its
drawbacks. There are several that we listed and discussed
before but two are useful to keep in mind for now:

I K-means is not good at finding non-spherical clusters.
I K-means (and the hierarchical methods) is a “hard” clustering

method, i.e. each point gets assigned to exactly one cluster.
We might have overlapping clusters and K-means would not
be ideal for this setting.

I As an aside, none of the clustering methods we have seen so
far are particularly statistical.
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A Picture

I We can see overlapping clusters.
I Points that could reasonably belong to either group are

impossible to distinguish.

I Suppose we denote by zi the (unobserved) cluster
membership for the i-th point. Just like in classification
maybe we want to model/estimate:

P (zi = red|xi), P (zi = green|xi), and so on.
These are probabilities of belonging to di�erent clusters, i.e.
they provide a soft clustering. 20
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Density Estimation

I We want to estimate the density of the points in some way
that allows us to extract clusters.

I The density is clearly not Gaussian, and a kernel density
estimator will not be directly useful for clustering. Want
something in-between.
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Mixture Models

I We are going to model the density as a mixture of simple
distributions:
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Mixture Models

I We are going to model the density as a mixture of simple
distributions:

I In particular,

f(x) =
Kÿ

k=1
⁄kfk(x),

where
1. fk are some simple distributions,
2. ⁄k Ø 0,

q
K

k=1 ⁄k = 1, are called mixture weights.
3. K is the number of mixture components (i.e. the number of

clusters).
I Do not get confused – summing densities is not the same as

summing draws from the distribution.
23
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Mixture Models

I How should we imagine mixture models? One way is to think
about how to sample from them.

I To sample from a mixture model:
I First we draw Z œ {1, . . . , K}, where P(Z = k) = ⁄k.
I Then we draw a sample from the simple distribution fZ .
I Why does this work? We know that:

f(x) =
Kÿ

k=1
P(Z = k)p(x|Z = k) =

Kÿ

k=1
⁄kfZ(x).

I Again, to emphasize: X ≥ 1
2N(0, 1) + 1

2N(1, 1) is not the
same as X1 ≥ N(0, 1), X2 ≥ N(1, 1), and X = X1 + X2.
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Gaussian Mixture Models

I By far the most popular mixture models are Gaussian Mixture
Models (GMMs).

I In a GMM each simple distribution is a multivariate Gaussian.
So we write:

f(x) =
Kÿ

k=1
⁄k„k(x; µk, �k),

where „k(·; µk, �k) denotes the Gaussian density with mean
µk and covariance �k.

I What are the parameters of this model?
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Gaussian Mixture Models

I Model: ⁄1, ⁄2, ⁄3 and
fred(x) = N(µred, �red),

fblue(x) = N(µblue, �blue),
fgreen(x) = N(µgreen, �green),
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Mixture Models in Clustering

I Suppose someone handed us a mixture model. How would we
“soft” cluster our data?

I For a point x we would compute for i œ {1, . . . , K}:

P (Z = i|X = x) =

I Does this expression make intuitive sense?
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Estimating a Mixture Model

I So we only have one real question remaining, given data
X1, . . . , Xn how do we estimate the parameters of the
mixture model i.e. the (⁄k, µk, �k)?

I Seems easy enough. We can use the LDA idea, take data
from each group, compute the fraction of points (for ⁄k), the
mean (for µk) and the covariance (for �k).

I Any problems with this? Are the parameters of a mixture
model even identifiable?

I In statistics we call these missing data or latent variable
problems, i.e. the cluster memberships Z1, . . . , Zn are missing.
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Estimating a Mixture Model

I So we only have one real question remaining, given data
X1, . . . , Xn how do we estimate the parameters of the
mixture model i.e. the (⁄k, µk, �k)?

I Seems easy enough. We can use the LDA idea, take data
from each group, compute the fraction of points (for ⁄k), the
mean (for µk) and the covariance (for �k).

I Any problems with this? Are the parameters of a mixture
model even identifiable?

I In statistics we call these missing data or latent variable
problems, i.e. the cluster memberships Z1, . . . , Zn are missing.
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Estimating a Mixture Model – MLE

I If we observed {(X1, Z1), . . . , (Xn, Zn)} we would just use
maximum likelihood, i.e. we would maximize:

¸¸((⁄k, µk, �k)K

k=1) =
nÿ

i=1
log f(Xi, Zi),

and this would give us the “LDA” estimates we discussed on
the last slide.

I If we don’t observe the Zi’s we should try to maximize the
likelihood of the data we see (this is called the marginal
likelihood):

m¸¸((⁄k, µk, �k)K

k=1) =
nÿ

i=1
log f(Xi),

equivalently:

m¸¸((⁄k, µk, �k)K

k=1) =
nÿ

i=1
log

C
Kÿ

k=1
f(Xi, k)

D

,

this is a hard problem in general. 29
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Estimating a Mixture Model – Expectation-Maximization

I EM is a general method for (approximately) maximizing the
(marginal) likelihood when you have missing data. We won’t
get too much into the details but describe the EM algorithm
for GMMs directly.

I Roughly, we want to first “guess” the latent variables Zi and
then if we knew those we could just maximize the
(usual/complete) likelihood.

I It resembles k-means. Except instead of assigning each point
to a single cluster we “softly” assign them so they contribute
fractionally to each cluster.
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Estimating a Mixture Model – Expectation-Maximization

I We initialize the parameters (⁄k, µk, �k)K

k=1 randomly, and
then alternate the following two steps:

1. E-step: We compute the cluster memberships for each point
i:

P (Zi = k|Xi) = ⁄k„k(Xi; µk, �k)
q

K

j=1 ⁄j„j(Xi; µj , �j)

as before.
2. M-step: Recompute the parameters:

⁄k =
q

n

i=1 P (Zi = k|Xi)
n

,

µk =
q

n

i=1 P (Zi = k|Xi)Xiq
n

i=1 P (Zi = k|Xi)
,

and similarly update the covariance matrix.
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Estimating a Mixture Model – EM in Action
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