
Unsupervised Statistical Learning:

Hierarchical Clustering

Siva Balakrishnan
Data Mining: 36-462/36-662

March 26th, 2019

1

 



Recap: Clustering

I Divide n data points into K groups, where roughly points
within group are more “similar” than points between groups.
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I Lots of di�erent uses, including data summarization, data
compression, helping downstream supervised learning tasks
and so on.
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Recap: Clustering v/s classification

I In classification, we are given labeled data (i.e. grouped data)
and want to learn a discriminator that works on new data.

I In clustering, we are just given the points, and want to learn
the groups.

I Often the focus in classification is on generalization, i.e. we
want to do well on new (test) data. In clustering,
generalization is usually not the explicit goal – we just want to
find interesting groups.
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Recap: k-means

I One way to cluster data is sometimes called objective based
clustering.

1. We write down an intuitive way to measure the quality of a
given clustering (our objective).

2. We then try to derive an algorithm to find a good clustering
(as measured by our objective).

I k-means is such a method.
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Recap: k-means

I Given a set of points X1, . . . , Xn and dissimilarites
d(Xi, Xj) = ÎXi ≠ XjÎ2

2.
I Denote a clustering by a function C which maps data points

to {1, . . . , K}.
I Three equivalent objectives:

1. Within-cluster scatter:

2. Within-cluster variation:

3. Modified within-cluster variation:

I A good clustering has low value of these objectives.
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Recap: Minimizing the objective – Lloyd’s algorithm

I It is hard to minimize the k-means objective over all possible
clusterings of the data. A popular heuristic is to use
alternating minimization.

I We want to minimize

Kÿ

k=1

ÿ

C(i)=k

ÎXi ≠ ckÎ2
2,

over both clusterings C and c1, . . . cK œ Rp.
I Minimize it just over C (keep c1, . . . , cK fixed)?

Minimize it just over c1, . . . , cK (keep C fixed)?
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Recap: Lloyd’s algorithm

We start with an initial guess for c1, . . . cK (e.g., pick K points at
random over the range of X1, . . . Xn), then repeat:

1. Minimize over C: for each i = 1, . . . n, find the cluster center
ck closest to Xi, and let C(i) = k

2. Minimize over c1, . . . cK : for each k = 1, . . . K, let ck = X̄k,
the average of points in group k

Stop when cluster assignments/within-cluster variation do not
change.

In words:
1. Cluster (label) each point based the closest center
2. Replace each center by the average of points in its cluster
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Recap: K-means example

Here Xi œ R2, n = 300, and K = 3
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What are some things K-means lacks?

K-means is a famous, standard clustering algorithm. However, it
lacks several potentially-desirable qualities:

I Ability to use other measures of dissimilarity

I “Interpretable” cluster centers

I Deterministic results

I Multi-level/scale view of clusters, Nested clusters.
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In K-means, cluster centers are averages

A cluster center is representative for all points in a cluster, also
called a prototype

In K-means, we simply take a cluster center to be the average of
points in the cluster. Great for computational purposes—but how
does it lend to interpretation?

Sometimes we prefer methods that return a representative item for
the cluster, rather than an average. For example: a “typical” asset
or company that is similar to all the other members of the cluster.
This makes it easier to think about what the cluster means.

Suppose we were clustering documents. What does an “average”
document mean? A typical document is more useful.
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K-medoids algorithm

K-medoids clustering addresses the first two concerns. It make
each center one of the cluster points. It also allows other
dimilarities to be substituted.

Initial guess for centers c1, . . . cK (e.g., randomly select K of the
points X1, . . . Xn), then repeat:

1. Minimize over C: for each i = 1, . . . n, find the cluster center
ck closest to Xi, and let C(i) = k

2. Minimize over c1, . . . cK : for each k = 1, . . . K, let ck = X
ú
k
,

the medoid of points in cluster k, i.e., the point Xi in cluster
k that minimizes

q
C(j)=k

ÎXj ≠ XiÎ2
2

Stop when within-cluster variation doesn’t change

In words:
1. Cluster (label) each point based on the closest center
2. Replace each center by the medoid of points in its cluster

11
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K-medoids example
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Properties of K-medoids

The K-medoids algorithm shares the properties of K-means that
we discussed (each iteration decreases the criterion; the algorithm
always converges; di�erent starts gives di�erent final answers; it
does not achieve the global minimum)

K-medoids returns centers that are actual data points.

K-medoids generally returns a higher value ofq
K

k=1
q

C(i)=k
ÎXi ≠ ckÎ2

2 than does K-means (why?).

K-medoids is computationally harder than K-means (because of
step 2: computing the medoid is harder than computing the
average)

13



From K-means to hierarchical clustering

Recall two properties of K-means (K-medoids) clustering:
1. Final clustering depends on the initial centers (does not find

global max)
2. Fits exactly K clusters (for fixed K)

Suppose we cluster with K = 3, and then decide we want a more
refined clustering with K = 4. The clusterings may have no
relation. This makes tuning the level of clustering a bit odd.

Hierarchical clustering will produce a result that:
I Is deterministic, based on the distances dij = d(xi, xj). No

random starts.
I Describes the resulting clusterings across all levels of

clustering (numbers of clusters K)
I Gives nested clusters as K changes!
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Agglomerative vs divisive

Two types of hierarchical clustering algorithms

Agglomerative (i.e., bottom-up):
I Start with all points in their own group
I Until there is only one cluster, repeatedly: merge the two

groups that have the smallest dissimilarity

Divisive (i.e., top-down):
I Start with all points in one cluster
I Until all points are in their own cluster, repeatedly: split the

group into two resulting in the biggest dissimilarity

We will focus on agglomerative strategies.
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Simple example

Given these data points, an agglomerative algorithm might decide
on a clustering sequence as follows:
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Step 1: {1}, {2}, {3}, {4}, {5}, {6}, {7};
Step 2: {1}, {2, 3}, {4}, {5}, {6}, {7};
Step 3: {1, 7}, {2, 3}, {4}, {5}, {6};
Step 4: {1, 7}, {2, 3}, {4, 5}, {6};
Step 5: {1, 7}, {2, 3, 6}, {4, 5};
Step 6: {1, 7}, {2, 3, 4, 5, 6};
Step 7: {1, 2, 3, 4, 5, 6, 7}.
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We can also represent the sequence of clustering assignments as a
dendrogram:
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Note that cutting the dendrogram horizontally partitions the data
points into clusters.
A dendrogram, however, contains more information than just the
sequence of clusters. The height at which a pair of clusters is
merged tells us how “similar” the clusters are (we’ll have lots more
to say about this).
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What’s a dendrogram?

Dendrogram: convenient graphic to display a hierarchical sequence
of clustering assignments. This is simply a tree where:

I Each node represents a group
I Each leaf node is a singleton (i.e., a group containing a single

data point)
I Root node is the group containing the whole data set
I Each internal node has two daughter nodes (children),

representing the the groups that were merged to form it

The choice of linkage determines how we measure dissimilarity
between groups of points

If we fix the leaf nodes at height zero, then each internal node is
drawn at a height proportional to the dissmilarity between its two
daughter nodes.
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How do we obtain a dendrogram?

I We go from the bottom-up. We just need to (recursively)
decide which pair of groups to merge.

I Given points X1, . . . Xn, and dissimilarities dij between each
pair Xi and Xj . (Think of Xi œ Rp and dij = ÎXi ≠ XjÎ2;
note: this is the Euclidean distance, not squared distance).

I Initially, when every point is in its own group this is easy: we
just merge the two closest points, i.e. the pair for which the
dissimilarity is smallest.

I We can imagine continuing to do this, but what is the
problem?
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Linkages

At any level, clustering assignments can be expressed by sets
G = {i1, i2, . . . ir}, giving indices of points in this group. Let nG

be the size of G (here nG = r). Bottom level: each group looks
like G = {i}, top level: only one group, G = {1, . . . n}

Linkage: function d(G, H) that takes two groups G, H and returns
a dissimilarity score between them

Agglomerative clustering, given the linkage:
I Start with all points in their own group
I Until there is only one cluster, repeatedly: merge the two

groups G, H such that d(G, H) is smallest

20
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Single linkage

In single linkage (i.e., nearest-neighbor linkage), the dissimilarity
between G, H is the smallest dissimilarity between two points in
opposite groups:

dsingle(G, H) = min
iœG, jœH

dij

Example (dissimilarities dij are
distances, groups are marked
by colors): single linkage score
dsingle(G, H) is the distance of
the closest pair
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Single linkage example

Here n = 60, Xi œ R2, dij = ÎXi ≠ XjÎ2. Cutting the tree at
h = 0.9 gives the clustering assignments marked by colors
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Cut interpretation: for each point Xi, there is another point Xj in
its cluster with dij Æ 0.9
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Complete linkage

In complete linkage (i.e., furthest-neighbor linkage), dissimilarity
between G, H is the largest dissimilarity between two points in
opposite groups:

dcomplete(G, H) = max
iœG, jœH

dij

Example (dissimilarities dij are
distances, groups are marked
by colors): complete linkage
score dcomplete(G, H) is the
distance of the furthest pair
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Complete linkage example

Same data as before. Cutting the tree at h = 5 gives the clustering
assignments marked by colors

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2 −1 0 1 2 3

−2
−1

0
1

2
3

0
1

2
3

4
5

6

H
ei
gh
t

Cut interpretation: for each point Xi, every other point Xj in its
cluster satisfies dij Æ 5
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Average linkage

In average linkage, the dissimilarity between G, H is the average
dissimilarity over all points in opposite groups:

daverage(G, H) = 1
nG · nH

ÿ

iœG, jœH

dij

Example (dissimilarities dij are
distances, groups are marked
by colors): average linkage
score daverage(G, H) is the av-
erage distance across all pairs

(Plot here only shows dis-
tances between the blue points
and one red point)
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Average linkage example

Same data as before. Cutting the tree at h = 1.5 gives clustering
assignments marked by the colors
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Cut interpretation: there really isn’t a good one!
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26

h 2.5
t



Common properties

Single, complete, average linkage share the following properties:
I These linkages operate on dissimilarities dij , and don’t need

the points X1, . . . Xn to be in Euclidean space
I Running agglomerative clustering with any of these linkages

produces a dendrogram with no inversions

Second property, in words: disimilarity scores between merged
clusters only increases as we run the algorithm

Means that we can draw a proper dendrogram, where the height of
a parent is always higher than height of its daughters
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Example of a dendrogram with no inversions
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Shortcomings of single, complete linkage

Single and complete linkage can have some practical problems:
I Single linkage su�ers from chaining. In order to merge two

groups, only need one pair of points to be close, irrespective
of all others. Therefore clusters can be too spread out, and
not compact enough

I Complete linkage avoids chaining, but su�ers from crowding.
Because its score is based on the worst-case dissimilarity
between pairs, a point can be closer to points in other clusters
than to points in its own cluster. Clusters are compact, but
not far enough apart

Average linkage tries to strike a balance. It uses average pairwise
dissimilarity, so clusters tend to be relatively compact and relatively
far apart
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Example of chaining and crowding
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Shortcomings of average linkage

Average linkage isn’t perfect, it has its own problems:
I It is not clear what properties the resulting clusters have when

we cut an average linkage tree at given height h. Single and
complete linkage trees each had simple interpretations

I Results of average linkage clustering can change with a
monotone increasing transformation of dissimilarities dij . I.e.,
if h is such that h(x) Æ h(y) whenever x Æ y, and we used
dissimilarites h(dij) instead of dij , then we could get di�erent
answers

Depending on the context, second problem may be important or
unimportant. E.g., it could be very clear what dissimilarities should
be used, or not

Note: results of single, complete linkage clustering are unchanged
under monotone transformations
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Example of a change with monotone increasing

transformation

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2 −1 0 1 2 3

−2
−1

0
1

2
3

Avg linkage: distance

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2 −1 0 1 2 3
−2

−1
0

1
2

3

Avg linkage: distance^2

32



Recap: hierarchical agglomerative clustering

Hierarchical agglomerative clustering: start with all data points in
their own groups, and repeatedly merge groups, based on linkage
function. Stop when points are in one group (this is agglomerative;
there is also divisive)

This produces a sequence of clustering assignments, visualized by a
dendrogram (i.e., a tree). Each node in the tree represents a group,
and its height is proportional to the dissimilarity of its daughters

Three most common linkage functions: single, complete, average
linkage. Single linkage measures the least dissimilar pair between
groups, complete linkage measures the most dissimilar pair,
average linkage measures the average dissimilarity over all pairs

Each linkage has its strengths and weaknesses
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Centroid linkage

Centroid linkage1 is commonly used. Assume that Xi œ Rp, and
dij = ÎXi ≠ XjÎ2. Let X̄G, X̄H denote group averages for G, H.
Then:

dcentroid(G, H) = ÎX̄G ≠ X̄HÎ2

Example (dissimilarities dij are
distances, groups are marked
by colors): centroid linkage
score dcentroid(G, H) is the dis-
tance between the group cen-
troids (i.e., group averages)
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1Eisen et al. (1998), “Cluster Analysis and Display of Genome-Wide
Expression Patterns”
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Centroid linkage is the standard in biology

Centroid linkage is simple: easy to understand, and easy to
implement. Maybe for these reasons, it has become the standard
for hierarchical clustering in biology
Here n = 60, Xi œ R2, dij = ÎXi ≠ XjÎ2. Cutting the tree at
some heights wouldn’t make sense ... because the dendrogram has
inversions! But we can, e.g., still look at output with 3 clusters
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Cut interpretation: there isn’t one, even with no inversions 35



Centroid Linkage Inversions
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Shortcomings of centroid linkage

I Can produce dendrograms with inversions, which really messes
up the visualization

I Even if were we lucky enough to have no inversions, still no
interpretation for the clusters resulting from cutting the tree

I Answers change with a monotone transformation of the
dissimilarity measure dij = ÎXi ≠ XjÎ2. E.g., changing to
dij = ÎXi ≠ XjÎ2

2 would give a di�erent clustering
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Linkages summary

Linkage No
inversions?

Unchanged
with monotone
transformation?

Cut
interpretation? Notes

Single X X X chaining

Complete X X X crowding

Average X ◊ ◊

Centroid ◊ ◊ ◊ simple

Note: this doesn’t tell us what “best linkage” is.

Remember that choosing a linkage can be very situation
dependent.
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More Practical Considerations

I As usual lots of choices – what dissimilarity, what linkage, if
K-means then how many clusters?

I Are clusters statistically significant? Imagine clustering noise,
would still obtain a partition of data, so how do we know the
clusters we found are “real”.

I In supervised learning, there was often a simple answer – try
them all out and select using performance on a validation set.
What do we do here?

I Generally di�cult to answer, often try di�erent things and see
what groups are persistent/stable, i.e. are prominent across
di�erent methods and choices.
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