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Announcements

I Midterm exam is on Thursday, in class, in this room.
I Material up to end of Lecture 12. (Not including linear

algebra review.)
I 1 double-sided page of notes allowed. Handwritten by you.

I No calculators or computers.
I No programming required. Only:

I Understanding a snippet of code.
I Being able to describe an algorithm in english.
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Supervised learning

We measure a bunch of covariates X1, . . . , Xp, along with a
response Y . We want to estimate Y when given new values of
X1, . . . , Xp.

Prediction focuses on a guess ‚Y = ‚f(X) for Y based on X.

Inference (previous/other statistics classes) focuses on questions
about the structure of f .

Interpretability focuses on the structure of ‚f , rather than f .
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Classification

For classification, we get predictors X = (X1, . . . , Xp) and
outcome Y , importantly Y is discrete. We usually notate
Y œ {1, . . . , K} for a K class problem.

Our classification rule ‚f(X) then gives values in {1, . . . , K}.

We measure the quality of a classification with a Loss function
L(y, ‚f(x)) (as in regression). However, since ‚f(x), y œ {1, . . . , K},
L(y, ‚f(x)) only takes K2 values, and can be represented by a
K ◊ K matrix.

Actually cancer Actually healthy
Predict cancer 0 1

Predict healthy 1 0
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Classification

We often talk about 0-1 loss, meaning that all misclassifications
have a loss of 1.

L(y, ‚f(x)) = I(y ”= ‚f(x)).

This is equivalent to just counting misclassifications.

Minimizing 0-1 loss gives the ideal classifier (you should
understand the steps here...),

‚f(x) = argmax
k=1,...,K

P(Y = k|X = x)

= argmax
k=1,...,K

P(X = x|Y = k) · fik,
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Classification

Minimizing 0-1 loss gives the ideal classifier,

‚f(x) = argmax
k=1,...,K

P(Y = k|X = x)

= argmax
k=1,...,K

P(X = x|Y = k) · fik,

This is called the Bayes classifier, and its error rate is called the
Bayes error. In the binary case, the Bayes error is:

E = E[min{P(Y = 1|X = x), 1 ≠ P(Y = 1|X = x)}].

It is the best error rate that is possible, even if one had complete
information about the process. (Similar to irreducible error in
regression.)

Most of our classifiers can be thought of as estimating either
P(Y = k|X = x) or P(X = x|Y = k) ◊ fik in an attempt to
approximate this rule.

6

as

ELI max

T l

E



Logistic regression

Models P(Y = k|X = x) directly, rather than P(X = x|Y = k)
like LDA. Focus on the case where K = 2.

log
3P(Y = 1|X = x)
P(Y = 0|X = x)

4
= ‚—1x1 + · · · + ‚—pxp = xT ‚—

e‚—1 can be interpreted as the multiplicative change in our model of
the odds of Y = 1 over Y = 0 when x1 increases by 1.

How do we estimate ‚—?
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Logistic regression

The actual classifications are given by checking

—0 + xT — > 0 vs. —0 + xT — Æ 0

or equivalently

P(Y = 1|X = x) > 0.5 vs. P(Y = 1|X = x) Æ 0.5

Gives a linear decision boundary (like LDA) but is less dependent
on assumptions.

I LDA will do better if the Gaussian model is reasonable. It
uses information from all the data.

I Logistic will do better if the LDA assumptions are badly
wrong. It focuses on data near the boundary.
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Slope=1/2
Slope=1
Slope=5

Perfectly separated groups make slopes grow toward infinity! This
will make R give errors. Our classifications will be overly-confident.
In general, good idea to regularize.
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Model Complexity Heuristics

There are two pictures to remember:
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Model Complexity Heuristics Contd.

Regularization gives us one way to control model complexity in
models with coe�cients.
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Regularized logistic regression

We can regularize logistic regression (in the same we would linear
regression) by penalizing large coe�cients. Penalizing coe�cients
will typically increase bias (the coe�cients are biased towards 0)
but can potentially reduce variance much more (at least for a
well-chosen penalty parameter).

I Ridge penalty: Reduce variance by shrinking.

I Lasso penalty: Reduce variance by shrinking, and also obtain
sparse ‚—.
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Linear Discriminant Analysis (LDA)

We model P(X = x|Y = k) by a multivariate Gaussian with shared
covariance between classes.

Leads to decision rule:

‚fLDA(x) = argmax
j=1,...K

‚”j(x)

where
”j(x) = xT �≠1µj ≠ 1

2µT
j �≠1µj + log fij

and
I ‚fij = nj/n, the proportion of observations in class j

I ‚µj = 1
nj

q
yi=j xi, the centroid of class j

I ‚� = 1
n≠K

qK
j=1

q
yi=j(xi ≠ ‚µj)(xi ≠ ‚µj)T , the pooled sample

covariance matrix
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LDA

Performs well on many data sets, particularly those where the
classes can be thought of as “clumps.”

Rule also provides K ≠ 1 dimensional transformation that separates
the classes well and can still represent ‚fLDA(x) perfectly.

Extensions:
I Quadratic discriminant analysis: using the same normal

model, we now allow each class j to have its own covariance
matrix �j . This leads to quadratic decision boundaries. (More
variance, less bias)

I Diagonal Covariance LDA: We assume that the covariance
matrix is diagonal and only estimate its diagonal entries.
Similar to Näıve Bayes assumption.
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Naive Bayes

Naive Bayes takes an alternative approach to modeling
P (X = x|Y = k).

Naive Bayes models the feature distributions as independent within
each class.

fk(x) = P (X = x|Y = k)
= P (X1 = x1|Y = k)P (X2 = x2|Y = k) · · · P (Xp = xp|Y = k)

=
pŸ

j=1
P (Xj = xj |Y = k)

I Individual features can be modeled flexibly.
I Works well when we have many features to model.
I Cannot capture dependence within class (unlike LDA).
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Support vector machine (SVM)
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Tries to find good separating lines between groups of points, in a
way that minimizes incursions across the boundary.

It does this by creating a “soft margin” around the boundary.
Points have a budget for allowed crossings, which is tuned by
cross-validation.
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Hard-Margin SVM

Maximize M

subject to
pÿ

j=1
—2

j = 1,

yi(—0 + xT
i —) Ø M.
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Soft-Margin SVM

Maximize M

subject to
pÿ

j=1
—2

j = 1, Ái Ø 0,
nÿ

i=1
Ái Æ C

yi(—0 + xT
i —) Ø M(1 ≠ Ái)

I Parameter C determines “softness” of the margin. Small C
makes it harder to cross. In particular, no more than C
observations cross because. . .

I Variable Ái encodes point location: Ái = 0 outside margin,
Ái > 0 inside margin, Ái > 1 across boundary.
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Tuning the budget shifts between bias (ignoring small features at
the boundary) and variance (letting small features at the boundary
dramatically shift the line).
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Kernels

I SVMs give us a way to obtain a linear classifier with a large
margin. Suppose we want a non-linear classifier.

I The usual answer is to use feature expansions, i.e. we take
our features and concatenate new features which are
combinations of existing features.

�((balance, income)) = (b, i, b ◊ i, b2, i2).

I A linear classifier in the expanded feature space is a non-linear
classifier in the original space.

I Can be computationally very annoying – we have to create,
store and manipulate these much (much) larger feature
vectors.
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Kernels

I If the optimal hyper-plane was a linear combination of our
data-points (it always is):

‚— =
nÿ

i=1
–ixi,

then SVMs could be written only in terms of inner products
xT

i xj for the training data (and of course the labels).
I To obtain the SVM classifier (after feature expansion) we do

not need to store the big feature vectors, we just need to be
able to compute their inner products quickly, i.e. we need
some way of computing �(x)T �(xÕ) for pairs of training
examples.
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Kernels

I For many interesting, non-linear kernels, we can compute
�(x)T �(xÕ) very easily using a kernel function:

K(x, xÕ) = �(x)T �(xÕ).
I For example, suppose our original data is 2 dimensional, if we

choose a quadratic feature map (so we can learn quadratic
decision boundaries):

�(x) = (1,
Ô

2x1,
Ô

2x2, x2
1, x2

2,
Ô

2x1x2).
Instead of computing �(x)T �(xÕ) by this feature expansion
we can see that this just corresponds to:

K(x, xÕ) = (1 + xT xÕ)2.

I For higher-order polynomials we use the polynomial kernel:
K(x, xÕ) = (1 + xT xÕ)p.

Another popular kernel is the Radial Basis Function kernel:
K(x, xÕ) = exp(≠“Îx ≠ xÕÎ2

2).
23



Kernels Main Points

I We can make linear classifiers non-linear by feature expansion.
I Many classifiers only need inner products between the training

examples.
I We can often compute inner-products between the feature

expanded training examples directly using kernels.
I This gives us a way to quickly “non-linearize” (kernelize)

classifiers without having to carefully craft feature expansions.
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Trees

Again, we wish to predict y œ {1, . . . , K} from x œ Rp.
Classification trees divide the feature space Rp into rectangles Rj .

For each Rj , we compute the proportion of points from each class,
and a single estimate cj corresponding to the most popular class.
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CART

The trees give us a recipe for mapping points to the corresponding
rectangle/estimate. We just progress down the tree.

To fit the tree, we split greedily at each step, ignoring the future.
We grow the tree very large, and then prune back to a reasonable
size with cross-validation.

How did we decide where to split? Purity...

I Very interpretable and easy to explain
I Flexible and adapt to a wide variety of signal shapes
I Invariant to variable transformations
I Able to capture interactions
I Unfortunately, high variance and thus somewhat poor

predictors
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Ensemble Classifiers

I Construct many di�erent classifiers { ‚f1, . . . , ‚fb}. Combine
their predictions by taking a (weighted) majority vote:

‚f(x) = sign(
bÿ

t=1
–t

‚ft(x)),

for some weights –t.
I Why do we call this voting?
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Boosting Key Ideas

I Want to force each classifier to bring something new (and
useful) to the ensemble.

I How much should we value each new classifier?
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The AdaBoost Algorithm

Initialize: Weights wi = 1/n
For b = 1, . . . , B:

1. Fit classification tree ‚f b to the training data with weights
w1, . . . , wn.

2. Compute weighted misclassification error:

eb =
qn

i=1 wiI{yi ”= ‚f b(xi)}qn
i=1 wi

3. Define –b = log 1≠eb
eb

4. Update the training data weights:

wi Ω wi · exp
1
–bI{yi ”= ‚f b(xi)}

2

Result: ‚f(x) = sign
1qB

b=1 –b
‚f b(x)

2
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Machine Learning – the Loss Minimization Viewpoint

In some sense, given training data a natural strategy is to select a
classifier which makes fewest mistakes on the training set, i.e.:

L( ‚f) = 1
n

nÿ

i=1
I(yi ”= ‚f(xi)).

Many classification algorithms can be viewed as attempting to
minimize an upper bound on the 0/1 loss. This is di�cult to do –
the 0/1 loss is not “nice” and is computationally di�cult to
minimize.
One way to deal with this is to minimize a proxy for the 0/1 loss.
This viewpoint unifies many of the methods we have seen so far.
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Machine Learning – the Loss Minimization Viewpoint
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Bagging

Bagging reduces the variance of an estimator. Many bootstrap
data sets are generated, and the estimator is fit on each one,
yielding many di�erent versions of ‚f (called ‚fúb).

When a new data point is observed, every ‚fúb makes a prediction,
and those predictions are combined into a lower-variance
prediction.

In our best version of this, each bootstrap tree produces a set of
class probability estimates. These are averaged across the trees,
and we choose the class with the highest average.

We can estimate variable importance by seeing which variables
most help their corresponding bootstrap trees. We can estimate
test error by looking at the “out of bag” samples — those that are
not drawn in a particular bootstrap realization.
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Bagging, a picture
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Bagging performance, Random forests

Bagging works well if: the predictors being combined are close to
independent.

Random forests are just bagged trees, with one twist. At each
split, only splits are only allowed on a small subset of m predictors,
rather than all p. m is often Ô

p.

This makes the trees more independent, which improves bagging.
It also stabilizes the behavior of correlated variables, since they will
not all appear together.
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Evaluating Classifiers

There are two things we typically can choose to evaluate:
I How good are the labels produced by the classifier?
I How good are the probability estimates produced?

To evaluate labels – missclassification error, and others that can be
more useful depending on application if we care about some errors
more than others:

I Sensitivity
I Specificity
I Postive Predictive Value
I Negative Predictive Value

We can tune these errors typically by trading them o�. For
instance, if we really wanted to reduce False Positives we could...

To evaluate probabilities we use calibration plots, or the ROC
curve (and the associated AUC measure).
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Remember!

Exam on Thursday at the usual class time. Don’t be late!

The exam is in this room.

Bring something to write with and your note sheets
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