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Quick Announcements

I Riccardo’s office hours.
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Recap: Ensemble Classifiers

I Construct many different classifiers {f̂1, . . . , f̂b}. Combine
their predictions by taking a (weighted) majority vote:

f̂(x) = sign(
b∑

t=1
αtf̂t(x)),

for some weights αt.
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Recap: Gradient Boosting for Regression
1. Key idea: Suppose we want to do regression. Fit an ensemble

of regression trees, incrementally, i.e.:

f̂(x) =
B∑

b=1
αbf̂

(b)(x)

where each f̂ (b)(x) is a regression tree.
2. We simply fit a small regression tree (a stump), find the

residual

R(xi) = yi − f̂ (1)(xi)

and now fit a new tree to the residuals, i.e. replace yi with
R(xi), and repeat.

3. In practice, this is a very popular and powerful regression
algorithm.
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Recap: Bagging

Given a training data (xi, yi), i = 1, . . . n, bagging1 averages the
predictions from predictors (here trees) over a collection of
boostrap samples.

For b = 1, . . . B (e.g., B = 100), we draw n boostrap samples
(x∗b

i , y
∗b
i ), i = 1, . . . n, and we fit a classification tree f̂ tree,b on

each sampled data set.

To classify an input x ∈ Rp, we simply take the most commonly
predicted class:

f̂bag(x) = argmax
k=1,...K

B∑
b=1

1{f̂ tree,b(x) = k}

This is just choosing the class with the most votes.

1Breiman (1996), “Bagging Predictors”
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Recap: Estimating Class Probabilities

I Each tree gives us a set of predicted class probabilities at x:

p̂tree,b
k (x),

These are simply the proportion of points in the appropriate
region that are in each class.

I Alternate bagging method: given an input x ∈ Rp, instead of
simply taking the prediction f̂ tree,b(x) from each tree, we go
further and look at its predicted class probabilities p̂tree,b

k (x),
k = 1, . . .K, and combine those.

I We define the bagging estimates of class probabilities:

p̂bag
k (x) = 1

B

B∑
b=1

p̂tree,b
k (x) k = 1, . . .K.
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Recap: Random Forests – Improved Bagging

Random forests2, an incredibly popular and successful prediction
approach, are a simple modification of bagged trees.

We’ve seen that bagging should improve with independence of the
trees. Bagged trees can have dependence because the same strong
variable always makes it into the same split.

Random forests make the trees more independent by only allowing
a small subset of variables to be considered at each split. At each
split, m < p variables are selected, and a split is chosen from
among those variables.

This leads the trees to be more varied and less independent. It also
leads to a nice balance among correlated variables. Finally, it
actually gives better predictions!

2Breiman (2001), “Random Forests”
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How do we estimate error?

How can we estimate how well we will predict/classify on new
data?

Cross-validation is tempting, because we have no creativity.

However, cross-validation could be quite expensive, since we’re
boostrapping and developing hundreds of trees each time.

What about the samples each bootstrap did not select?
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Out-of-Bag error estimation

Each training point should be missing from about 1/3 of the
bootstrap samples. That subset of the trees have not been overfit
to the training point!

For each sample point, we get an average prediction from the 1/3
of the trees that didn’t include it. We combine these predictions
over all the points to get an out-of-bag MSE estimate.

This acts like a cross-validated estimate, but it’s free!
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Digging into Random Forests

The bagged classifier is now an average of many trees. This is
much harder to interpret! (If you thought trees were hard to
interpret...)

Similarly, one of the big selling points of the Lasso is that it
produces interpretable models. By seeing the sparsity pattern, we
know which variables are being used for predicting.

We see that random forests predict incredibly well. However, an
average of hundreds of random trees is harder to understand.

We need tools to peek into these “black box” methods to
understand how they’re using the data.
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Variable Importance

The most basic task is to understand which predictors are
important for making the random forest prediction.

Random forests don’t explicitly do variable selection like the lasso,
but their individual trees tend to rely more on informative variables
when they search for the next split.

There are two popular ways to measure variable importance:
1. For each variable, measure the amount that RSS (or Gini

index) decreases due to splits in that variable. Average this
over all trees in the forest

2. Randomly permute each variable (one at a time) and see how
much the model performance decreases.

The varImpPlot method in R computes the first of these.
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Disadvantages

It is important to discuss some disadvantages of bagging:
I Loss of interpretability: the final bagged classifier is not a tree,

and so we forfeit any interpretability a tree might have had.

I Computational complexity: we are essentially multiplying the
work of growing a single tree by B (especially if we are using
the more involved implementation that prunes and validates
on the original training data)
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Thinking About Classifiers

I So far, we have focused mainly on the 0/1 loss and using the
misclassification error (on a held-out set) to evaluate our
classifiers. In practice, there are many more quantities that we
can compute to assess a classifier.

I Broadly, can separate into two kinds of measures:
I Assessing the predicted class labels (things like classification

error)

I Assessing the predicted class probabilities (things like ROC
curves, calibration etc.)
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Calibration

Is our p̂(x) a good estimate of p(x) = P(Y = 1|X = x)?

Why do we care? We’re just going to threshold it...

There is information in knowing P(Y = 1|X = x).
I A case that is definitely fraud (p(x) = 0.99) may be handled

very differently than a case that might be fraud (p(x) = 0.52).

Calculating the proper trade-offs for making decisions depends
on the probabilities, not just the categories.

Note: Even if p̂(x) is not a good approximation of p(x),
thresholding p̂(x) might still give good guess at categories.
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Calibration: Aside

I Many classifiers (SVMs, Boosting, Neural Networks) do not
directly produce estimates of the class conditional
probabilities. Rather, they just produce scores which we then
threshold.

I In practice: we can transform scores {y1, . . . , yK} for a point
x into numbers that behave like probabilities (they still are
not really probabilities).

I Often:

P(y = k|X = x) = exp(yk)∑K
j=1 exp(yj)

.
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Calibration plots

Focus for now on the binary case. Let us denote
p̂(x) := P̂(y = 1|X = x). To check how well calibrated your p̂(x)
is, you can make a calibration plot:

1. Bin the data according to predicted probability, p̂(x). E.g.,
[0, 0.1], (0.1, 0.2], . . . , (0.9, 1].

2. For each bin, calculate the proportion of observations with
class Y = 1

3. Plot these true fractions against the midpoints of the bin
predicted probabilities
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Calibration plots
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Calibration plots
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Fig. 11.1: Left: A simulated two-class data set with two predictors. The solid
black line denotes the 50% probability contour. Right: A calibration plot
of the test set probabilities for random forest and quadratic discriminant
analysis models

For example, Fig. 11.1 shows a sigmoidal pattern such that the QDA model
under-predicts the event probability when the true likelihood is moderately
high or low. An additional model could be created to adjust for this pattern.
One equation that is consistent with this sigmoidal pattern is the logistic
regression model (described in Sect. 12.2). The class predictions and true
outcome values from the training set can be used to post-process the proba-
bly estimates with the following formula (Platt 2000):

p̂∗ =
1

1 + exp (−β0 − β1p̂)
(11.1)

where the β parameters are estimated by predicting the true classes as a
function of the uncalibrated class probabilities (p̂). For the QDA model, this

process resulted in estimates β̂0 = −5.7 and β̂1 = 11.7. Figure 11.2 shows the
results for the test set samples using this correction method. The results show
improved calibration with the test set data. Alternatively, an application of
Bayes’ Rule (described model is Sect. 13.6) can be similarly applied to recal-
ibrate the predictions. The Bayesian approach also improves the predictions
(Fig. 11.2). Note that, after calibration, the samples must be reclassified to
ensure consistency between the new probabilities and the predicted classes.

(From Applied Predictive Modeling by Kjell Johnson and Max Kuhn)
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Miscalibration

I When the calibration is off you can try to fix it by
transforming p̂(x).

I The usual way to do this is to run a logistic regression with
p̂(x) as the only feature.
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Confusion matrix

Back to classifying
I Y = 1 if an event of interest happened
I Y = 0 if it did not happen

Recall: In K-class classification, we can make K(K − 1) different
kinds of mistakes!

We will be thinking more about these confusion matrices.

In our 2× 2 setting:

True Y = 1 True Y = 0
Guess Y = 1 True Positive False Positive
Guess Y = 0 False Negative True Negative
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Misclassification rate

Suppose that I tell you my classifier has 97% accuracy. Is this
good?

It depends! What if I am predicting lottery wins. The probability
of winning may be 1/175000000.

In that case, guessing ”no” has a misclassification rate of
5× 10−9...

We need to consider the base rate or the error rate of the näıve
classifier. This depends on the probability of each class given no
further information.
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Confusion matrix: error rates

True Y = 1 True Y = 0
Guess Y = 1 True Positive False Positive
Guess Y = 0 False Negative True Negative

Other error rate measures better capture asymmetric concerns
when classifying:

I Sensitivity (Recall, Hit rate):

I Specificity (True Negative Rate, TNR):

These quantities will allow us to better think about cost trade offs.
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Sensitivity and Specificity

Sensitivity: Fraction of points with Y = 1 that we find.
I Want high Sensitivity when False Negatives are more costly

than False Positives. Example: Fraud detection.

Specificity: Fraction of points with Y = 0 that we avoid.
I Want high Specificity when False Positives are more expensive

than False Negatives. Example: Criminal trials.

We would like both of them to be high, but we need to make
tradeoffs as we adjust our threshold.

I We can flag more cases as fraud to improve sensitivity, but
this will decrease our specificity.
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Other metrics

Positive predictive value (PPV):

PPV = # observations correctly classified as positive
#observations classified as positive

= TP

TP + FP

Suppose that you take a test for a disease. The PPV captures the
probability that you actually have the disease when you test
positive.
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Other metrics

Negative Predictive Value (NPV):

NPV = # observations correctly classified as negative
#observations classified as negative

= TN

TN + FN

Suppose that you take a test for a disease. The NPV is the
probability that you are not sick, given that the test comes up
negative.
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Changing threshold on P(Y = 1|X = x)

To compare predictors based on their probability estimates (as
opposed to their accuracies) we often use the ROC (Receiver
operating characteristic) curve. As we change the threshold on
P(Y = 1|X = x), we vary the size and quality of the set we reject.

We can think about P(Y = 1|X = x) as a function for ranking our
observations by likelihood of Y = 1.

It is convenient to look at the Sensitivity and Specificity of our
classifier as the threshold changes. This corresponds to the ROC
curve.
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ROC Curve
ROC Curve for Marketing Data
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ROC Curve

How well does a random classifier do?
29



How well does a random classifier do?
I What is a random classifier?
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ROC Curve

I A generally higher curve tends to be better, though you
should keep tradeoffs in mind.

I The Area Under the Curve (AUC) is one way to measure this.
A higher area tends to be more attractive.

I ROC curves will often cross each other and the AUC may not
be satisfactory. You are really interested in the performance
cutoff at a particular point on the curve
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Linear Algebra Review
I A vector:

I A vector written in the standard basis:

I The length of a vector in the standard basis:
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Linear Algebra Review
I A basis:

I Orthonormal matrices:

I Important properties of orthonormal matrices:
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Eigendecomposition
I A square, real, symmetric matrix:

I Diagonalizing a square, real, symmetric matrix:

I Eigenvectors definition:
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Eigendecomposition
I Why is the eigen-basis nice?

I Computing matrix-vector products:

I Computing matrix inverse/pseudo-inverse:
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Singular Value Decomposition
I What if we have a non-square, non-symmetric matrix?
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