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Quick questions

» How many of you are comfortable with linear algebra?
Particularly: eigenvectors, eigenvalues, singular value
decomposition.

(Many things we will see soon-ish — PCA, spectral clustering,
matrix completion — will depend heavily on this.)

» Riccardo’s office hours.



Recap: Ensemble Classifiers

Construct many different classifiers {fl, e fb} Combine
their predictions by taking a (weighted) majority vote:
b
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for some weights a;.
Why do we call this voting?




Recap: Boosting Key ldeas

» Want to force each classifier to bring something new (and
useful) to the ensemble

+ weght 'q:uen)b m oach
ttecadion .

» How much should we value each, new classifier?

W %‘8“7' h L was accurate B



Recap: The AdaBoost Algorithm

Initialize: Weights w; = 1/n
Forb=1,..., B:

1. Fit classification tree ]/"7’ to the training data with weights
Wi1y...,Wnp.

2. Compute weighted misclassification error:

i wil] i # o)}
_ - ?z1wz -

3. Define a, = log =%

4. Update the training data weights:
W; < W; + exXp (ozb]I{yi + f’b(azz)})

Result: f(z) = sign (Zle %ﬂ(x) )
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Boosting in Pictures
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Recap: Boosting the Alternate Viewpoint
Adaboost is just

1. Empirical risk minimization with an exponentigl Ioss UF(’YD
1 n
- Z e Vil (@)
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2. Assuming an additive model of trees:
B
T) = Zabf(b)(-??)
b=1

with £ () constrained to be a tree.
3. And greedy, stepwise optimization
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Can now play with the loss and desi_%r;lx“(rjression boosting”
algorithms.




Gradient Boosting for Regression

1. Key idea: Suppose we want to do regression. Fit an ensemble
of regression trees, incrementally, i.e.:

B
flz) =Y apfO(x)
b—1

where each f()(z) is a regression tree.

2. We simply fit a small regression tree (a stump), find the
residual

R(xi) = yi — J?(l)(a%')
k/v-g

and now fit a new tree to the residuals, i.e. replace y; with
R(x;), and repeat.

3. In practice, this is a very popular and powerful regression
algorithm.



Gradient Boosting in Pictures

» There is a very neat applet that you can play with here:
https://arogozhnikov.github.i0/2016/06/24/gradient _
boosting_explained.html




Boosting discussion

In boosting, we tend to use very simple estimators, like very
shallow trees. These have low variance, but are high bias. Because
the sequence of trees can adjust for previous errors, they can fix
the bias!

The shallower trees can also lead to computational speedups in
evaluation, since you don't have to evaluate 500 deep trees (this
comment will be clearer at the end of today).
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Boosting discussion

Boosting is one of the most powerful classical methods. When
well-tuned, it can beat most other classifiers.

However, it requires more tuning than random forests.

Tuning parameters:
» Number of trees, B
» Number of splits in each tree &—
» Other parameters we did not talk about: Amount of
subsampling, n
» Other parameters we did not talk about: Amount of
shrinkage, v

In boosting, choosing B too large can in some cases cause
overfitting (though miraculously not always). Choosing it too small
can give a bad classifier.

B is the main tuning parameter. The others can be tuned more

roughly, since it doesn’'t matter quite as much.
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Reducing the variance

We've seen that decision trees are very flexible, but have high
variance. This leads to poor classification error.

\
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How can we reduce variance? a
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We know that averaging independent things reduce  yananee .
variance. But independent trees would require more data!
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The bootstrap

The bootstrap! is a fundamental resampling tool in statistics.

The basic idea underlying the boostrap is that we can estimate the
true distribution F by the so-called empirical distribution F

Given the training data (z;,¥;), i = 1,...n, the empirical
distribution function F is simply

L i (x,9) = (x;,y;) for some i
Pf{(X7Y):(x7y)}: " :
0 otherwise
I

This is just a discrete probability distribution, putting equal weight
(1/n) on each of the observed training points

'Efron (1979), “Bootstrap Methods: Another Look at the Jacknife”
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True Distribution
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With the bootstrap, we are approximating the true distribution by
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a discrete distribution over the original sample data points.
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> usua ”Y f, ‘
A bootstrap sample of siz@m the training data is

(x7,y7),i=1,...m

where each (z},y)) are drawn from uniformly at random from
(x1,Y1), - - - (Tn, Yn), with replacement

This corresponds exactly to m independent draws from F. Hence
it approximates what we would see if we could sample more data
from the true F. We often consider m = n, which is like sampling
an entirely new training set.
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Bootstrap: Assessing Variance of an Estimator

» The typical use case of the bootstrap is to assess variance of
%an estimator (or to construct confidence intervals).
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What shows up?

Note: not all of the training points are represented in a bootstrap

sample_and some are represented more than once. When m = n,
about f points are left out, for large n (Try to prove this).

These left out points feel almost like a validation set. .. (Later)
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Bagging

Bootstrapping gives us an approach to variance reduction!

We are worried that our tree could change dramatically if we drew
a slightly different sample.

What if we draw many bootstrap data sets, fit a new tree on each
one, and “average" their predictions (somehow)! Now we'll see all
the different trees that might show up, and their combination will
be stable!

You are likely accustomed to seeing the bootstrap for estimating
errors. Now we're using it to construct predictions!
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Bagging (more carefully)

Given a training data (z;,%;), i = 1,...n, bagging® averages the
predictions from predictors (here trees) over a collection of
boostrap samples.

For b=1,... B (e.g., B =100), we draw n boostrap samples
(:v;‘b,y;‘b), 73 =1,. jand we fit a classification tree fe®b on
each sampled data Ssét.

L) leg;/no Pmm

To classify an input x € RP, we simply take the most commonly
predicted class: vo‘d ,(e m 47
B

P = argmax 31(7400) = 1) — lese Clever

k=1,..K 3] *Lbbd'lﬁ

This is just choosing the class with the mogst votes.

ngenSUS mefio]
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Tree depth

Most commonly, trees are grown fairly large on each sample, with
no pruning. Why are we less worried about tuning each tree?

Because av emﬂ*"ﬁ WT[ rwtl vanand

What happens to variance as we average many things together?

Q—A,le olown .

What happens to bias as we&”average many things together?

Bac won"' c’uvve NwC’L
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Example: bagging

Example (from ESL 8.7.1): n = 30 training data points, p = 5
features, and K = 2 classes. No pruning used in growing trees:
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Bagging helps decrease the misclassification rate of the classifier
(evaluated on a large independent test set). Look at the orange

curve:
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Voting probabilities are not estimated class probabilities

Suppose that we wanted estimated class probabilities out of our
bagging procedure.

What about using the proportion of votes that were for class k?’F(
afjlon

5% (x Zl{wfeeb (z) = k} gud (&bd k.

This is generally not a good estimate.

Simple example: suppose that the true probability of class 1 given
x is 0.75. Suppose also that each of the bagged classifiers
Fireed(z) correctly predicts the class to be 1. Then po?8(z) = 1,
which is wrong

24



Estimated class probab|I|t|es

- each tree br o ph x (fl’(v 1%, B0 4x)--

hat's nice about trees is that each tree already gives us a set of
predicted class probabilities at x:

ﬁzree,b(x),

e ——)

These are simply the proportion of points in the appropriate region
that are in each class

This suggests an alternative method for bagging. Now given an
input = € RP, instead of simply taking the prediction ﬁree’b(x)
from each tree, we go further and look at its predicted class
probabilities ’ﬂeeb( ), k=1,...K, and combine those!
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Alternative form of bagging

We define the bagging estimates of class probalees q’ e
auero\

~bag ~tree, b m 0"
pp C(x) = Z p. o (x) k=1,...K
=G e Do e

The final bagged classifier just chooses the class with the highest mb"’

probability: Oll‘fe .
FP%8(z) = argmax ﬁzag(x) d"/

k=1,.K :

This form of bagging is preferred if it is desired to get estimates of

the class probabilities.

1

It also tends to give better predictions!
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Example: alternative form of bagging

Previous example revisited: the alternative form of bagging
produces misclassification errors shown in green
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Random Forests: History and Motivation

» Invented by Leo Breiman while trying to understand boosting
and bagging better.

Do we Need Hundreds of Classifiers to Solve Real World
Classification Problems?

Manuel Fernandez-Delgado MANUEL.FERNANDEZ.DELGADOQUSC.ES
Eva Cernadas EVA.CERNADAS@USC.ES

We evaluat arising from 17 families (discriminant analysis, Bayesian,
neural networks, s cctor machines, decision trees, rule-based ¢ ’rs, boosting,
bagging, stacking, random forests and other ensembles, generalized linear models, nearest-
fleignbors, partial lcmd principal component regression, logistic and multino-
mial regression, multiple adaptive regression splines and other methods), implemented in
Weka, R (with and without the caret package), C and Matlab, including all the relevant
classifiers available today. We use 121 data sets, which represent the whole UCI data
base (excluding the large-scale problems) and other own real problems, in order to achieve
significant conclusions about the classifier behavior, not dependent on the data set col-
lection. The classifiers most likely to be the bests are the random forest (RF)

versions, the > .
the maximum accuracy overcoming ‘)()% in the 81 3‘/ of lhv (L\td sets. Ilo\wvvl tlu- (llf—
ference is not statistically significant with the second best, the SVM with Gaussian kernel
implemented in C using LibSVM, which achieves 92.3% of the maximum accur acy. A few
models are clearly better than the remaining ones: random forest, SVM with Gaussian
and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet
(a committee of multi-layer perceptrons implemented in R with the caret package). The
random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF),
followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5
and 3 members in the top-20, respectively).




Random Forests: Improved Bagging

Random forests®, an incredibly popular and successful prediction
approach, are a simple modification of bagged trees.

We've seen that bagging should improve with independence of the
trees. Bagged trees can have dependence because the same strong
variable always makes it into the same split.

a small subset of variables to be considered at each split] At each

spli variables are selected, and a split is chosen from
among those variables. ‘-’
F o

{ Random forests make the trees more independent by onljllowing

— — mote

This leads the trees to be more varied and @independent. It also
leads to a nice balance among correlated variables. Finally, it
actually gives better predictions!

*Breiman (2001), “Random Forests”
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How do we estimate error?

How can we estimate how well we will predict/classify on new
data?

Cross-validation is tempting, because we have no creativity.

However, cross-validation could be quite expensive, since we're
boostrapping and developing hundreds of trees each time.

What about the samples each bootstrap did not select?
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Out-of-Bag error estimation

Each training point should be missing from about 1/3 of the
bootstrap samples. That subset of the trees have not been overfit
to the training point!

For each sample point, we get an average prediction from the 1/3
of the trees that didn't include it. We combine these predictions
over all the points to get an out-of-bag MSE estimate.

This acts like a cross-validated estimate, but it's free!
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Digging into Random Forests

The bagged classifier is now an average of many trees. This is
much harder to interpret! (If you thought trees were hard to
interpret...)

Similarly, one of the big selling points of the Lasso is that it
produces interpretable models. By seeing the sparsity pattern, we
know which variables are being used for predicting.

We see that random forests predict incredibly well. However, an
average of hundreds of random trees is harder to understand.

We need tools to peek into these “black box” methods to
understand how they're using the data.
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Variable Importance

The most basic task is to understand which predictors are
important for making the random forest prediction.

Random forests don't explicitly do variable selection like the lasso,
but their individual trees tend to rely more on informative variables
when they search for the next split.

There are two popular ways to measure variable importance:

1. For each variable, measure the amount that RSS (or Gini
index) decreases due to splits in that variable. Average this
over all trees in the forest

2. Randomly permute each variable (one at a time) and see how
much the model performance decreases.

The varImpPlot method in R computes the first of these.
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Disadvantages

It is important to discuss some disadvantages of bagging:

» Loss of interpretability: the final bagged classifier is not a
tree, and so we forfeit the clear interpretative ability of a
classification tree

» Computational complexity: we are essentially multiplying the
work of growing a single tree by B (especially if we are using
the more involved implementation that prunes and validates
on the original training data)
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