
Classification: Boosting

Siva Balakrishnan
Data Mining: 36-462/36-662

February 19th, 2018

Chapter 8.3-8.4 of ISL and Chapter 10 of ESL

1

0

Announcements

I Riccardo will now have o�ce hours on Thursday from
10am-11am in the BH 132 Lounge.

2

The Loss-Function View of Classification
Many classifiers we have studied so far (SVMs, logistic regression,
linear regression) and ones that we will study today (Boosting) can
be viewed as minimizing some loss function on the training data
(usually with a regularizer).

I What do you observe about all these losses?
I Why is this a nice thing?

3

min max l yf

hinge loss

171113115

main E eeGi x
if
1 7 1113113

Recap: Decision Trees Basics

I Key idea: Partition feature space into rectangles
{R1, . . . , Rm}. Within each rectangle use a simple predictor
of y|X.

|x2< 0.111
x1>=0.4028

x2>=0.4993

x1< 0.5998

x2< 0.598
0

60/0

0
148/0

0
39/0

1
0/71

0
101/0

1
0/81

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x1

x2

I These are flexible, non-linear classifiers.

4

Recap: Simple Predictors

I Regression: Just use the average of points in the rectangle,
i.e. for a new x œ Rj , we use

‚f(x) = 1
nj

ÿ

i:xiœRj

yi.

I Classification: Just use the most likely class in the
rectangle, i.e. for a new x œ Rj , we use

‚f(x) = arg max
k

‚pk(Rj),

where

‚pk(Rj) = 1
nj

ÿ

i:xiœRj

I(yi = k).

5

fraction
of ptsin classK

Recap: Growing Trees
I The CART algorithm grows trees greedily, i.e. at each step we

find the (feature, location) to split at that “looks best” and
then recurse.

I Formally, consider splitting on variable j and split point s, and
define the regions

R1 = {X œ Rp : Xj Æ s}, R2 = {X œ Rp : Xj > s}

We then greedily chooses j, s by minimizing the
misclassification error

argmin
j,s

1
nR1

#
1 ≠ ‚pc1(R1)

$
+ nR2

#
1 ≠ ‚pc2(R2)

$2

Here c1 = argmaxk=1,...K ‚pk(R1) is the most common class
in R1, and c2 = argmaxk=1,...K ‚pk(R2) is the most common
class in R2.

6

Recap: Purity and Measuring Purity
I When we consider a split that minimizes the misclassification

error we are essentially favoring splits that create “pure”
rectangles (i.e. most points in each rectangle belong to a
single class).

I In practice, we often use di�erent measures of purity than the
missclassification error. A common alternative is the Gini

Index:

Gini(Rj) =
Kÿ

k=1
‚pk(Rj)

#
1 ≠ ‚pk(Rj)

$
.

In this case, we would pick the split (greedily) that minimized:

argmin
j,s

1
nR1Gini(R1) + nR2Gini(R2)

2
.

I There are other criteria (for instance, based on Entropy or
Variance) that are also sometimes used.

7

O

if pure then
Gini 70
if impurethen

g
much larger

Recap: Pruning

I (Fully-Grown) Decision Trees will almost always overfit. They
will perfectly classify the training data but will not do so well
on test data.

I There are two options:
1. Stop early: i.e. do not grow the full tree.
2. Grow the full tree and then prune it back to eliminate some

splits.
In practice, we always do (2).

I The precise details are somewhat complicated – but the main
idea is:

1. We grow a full tree.
2. Create a collection of sub-trees of the full tree (i.e. trees that

are obtained by pruning the original tree).
3. Choose from the sub-trees using a validation set.

8

How well do trees predict?

Trees seem to have a lot of things going in the favor. So how is
their predictive ability?

Unfortunately, the answer is not great.

Trees tend to su�er from high variance because they are quite
unstable: a small change in the observed data can lead to a
dramatically di�erent sequence of splits, and hence a di�erent
prediction.

This instability comes from their greedy nature; once a split is
made, it is permanent and can never be “unmade” further down in
the tree

9

Can we fix trees?

I One way to fix the variance problem of trees is to grow
(really) small trees. These are typically called decision stumps.

I What is the problem with just using stumps?

I How can we fix this problem?

10

1

high bias onlydo afew

grow trees
splits

many stumps
g

Boosting

I Boosting is an (iterative) approach to combining many weak
estimators into a powerful estimator.

I In boosting, we will build a sequence of simple prediction
functions (usually trees). Each function will try to do well on
observations that the previous functions did poorly on.

11

decisionslump

Boosting in an Example

12

G
high test

error

025 test error

much better

than a single
tree

Boosting: History

I Kearns asked an important question: can weak learners be
improved?

I Suppose that you were able to classify any (reasonable)
data-set just slightly better than random guessing (weak
learning). Can we combine these weak learners to obtain ones
that are much better than random?

I Schapire (and later Freund and Schapire) developed boosting

algorithms to show that this was indeed possible.
I Their work had a tremendous amount of practical impact (for

instance, won the Gödel prize) and got many di�erent
communities excited.

13

O
bo.FI

Boosting: High-Level

I Focus on binary classification with yi œ {≠1, +1}.
I Roughly, we are going to construct a classifier by voting or

ensembling, i.e. we combine many (potentially) weak
classifiers ‚f1, . . . , ‚fb to produce our classifier:

‚f(x) = sign(
bÿ

t=1
–t

‚ft(x)),

for some weights –t.
I Two important questions:

1. How do we obtain the classifiers ‚ft? We know they are “weak”
(cannot be good everywhere) so we want to force them to
learn about di�erent inputs (diverse).

2. How do we decide the weights –t?

14

each Ii X htt

C weight

O
O

Original Boosting Algorithm (AdaBoost)
Initialize: Weights wi = 1/n
For b = 1, . . . , B:

1. Fit classification tree ‚f b to the training data with weights
w1, . . . , wn.

2. Compute weighted misclassification error:

eb =
qn

i=1 wiI{yi ”= ‚f b(xi)}qn
i=1 wi

3. Define –b = log 1≠eb
eb

4. Update the observation weights:

wi Ω wi · exp
1
–bI{yi ”= ‚f b(xi)}

2

Result: ‚f(x) = sign
1qB

b=1 –b
‚f b(x)

2

15

O Adaptive

decision stamp
usual

Etty thx
70 if wrong expkb

w

AdaBoost: Step 1
I Need to build a classifier for a weighted data set.
I Interpretations:

I The i-th training example now counts as wi training examples.
I Imagine re-sampling a new training dataset using the weights.

You would get “more” of the points with higher weights.
I For the MLE for example:

I For decision trees:

16

initially Chi's Ha

E JO

logistic regression
ME argnpaxitzyixfploglhexplptxiD.MEEiwifyixip T

change split rule
use

a

weighted mis classification error

AdaBoost: Step 3
–b = log 1≠eb

eb
.

0.0 0.2 0.4 0.6 0.8 1.0

−4
−2

0
2

4

x

lo
g(

(1
 −

 x
)/x

)

This step stretches out probabilities near 0 and 1. It should remind
you of logistic regression.

1. If a classifier is perfect what is its weight?
2. If it is just randomly guessing? 17

randomly guesses Yi
eb 42 Nb O

eb O

Lb 00

AdaBoost: Step 4

wi Ω wi · exp
1
–bI{yi ”= ‚f b(xi)}

2

If yi was guessed wrong, multiply weight by

If yi was guessed right, multiply weight by

If –b is big, the classifier did its job

If –b is big, the weights increase

18

11

exp as
explo L

well
more dramatically

Adaboost intuition

We have enough for an intuition. Adaboost builds a sequence of
trees, each of which tries to classify well on points that were
missed by the earlier trees.

The observation weights, wi, focus later classifiers on di�cult
points.

The classifier weights –b capture how well each component
classifier does its weighted task, and is used for both

I Adjusting the observation weights
I Weighting the components in the final classifier

But why exactly these weights and functions??

19

Why this form for AdaBoost?

Suppose that we care about misclassification error, or 0-1 loss.
When Y œ {≠1, 1}, we can rewrite this.

‚f(x) = argmin
f

EI{Y ”= f(X)} =

We’ve constrained ourselves to make f(X) be an additive model
built out of simple trees, so the sample version of this problem
becomes

‚f(x) = argmin
–b,f (b)

1
n

nÿ

i=1
I

I

yi

A
Bÿ

b=1
–bf

(b)(xi)
B

< 0
J

Now it just looks like an optimization problem! But how do we
optimize it?

20

hows
ar9mfin Efflux so

Approximating 0-1 loss
It turns out that 0-1 loss is not a very nice function to optimize

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.

0
1.

0
2.

0
3.

0

x

Lo
ss

(x
)

0−1 Loss

It’s not di�erentiable or continuous. It’s also constant except at 0!

Without being able to take a derivative, it’s hard to tell what local
changes to your function will improve the fit.

With regions of constant loss, there’s not a sense of “close to
correct,” so it’s hard to know which points are close to being
correctly classified.

21

Approximating 0-1 loss
We switch 0-1 loss for another function that’s easier to optimize
and has similar behavior in important ways

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

x

Lo
ss

(x
)

0−1 Loss
Exp loss

This new function is continuous and di�erentiable and convex, and
it is still monotonically decreasing.

If we can make the exponential function small, our 0-1 loss will
also be good.

22

With the new loss

Making that switch, instead of solving

argmin
{–b,f (b)}

nÿ

i=1
I

I

yi

A
Bÿ

b=1
–bf

(b)(xi)
B

< 0
J

we just have to solve

argmin
{–b,f (b)}

nÿ

i=1
exp

A

≠yi

A
Bÿ

b=1
–bf

(b)(xi)
BB

23

With the new loss
We just have to solve

argmin
{–b,f (b)}

nÿ

i=1
exp

A

≠yi

A
Bÿ

b=1
–bf

(b)(xi)
BB

This is still tricky, so we cheat just a little more. We optimize one
‚f (b) at a time while holding the previous functions fixed, and never
come back.

argmin
–b,‚fb

nÿ

i=1
exp

A

≠yi ·
A

b≠1ÿ

k=1
–k

‚fk(x) + –b
‚f b(x)

BB

This is a greedy algorithm. It seeks immediate rewards, rather than
optimizing the overall objective.

24

one new tree

I Oddly enough, optimizing this objective leads to the entire
AdaBoost algorithm with all the weights and transformations!

I This is a bit di�cult to see (but see Page 344 of ESL).
I The main takeaway though is important: boosting is an

algorithm to minimize the exponential loss using an additive
model that it fit incrementally.

I So important that I will repeat it again...

25

Adaboost summary
Adaboost is just

1. Empirical risk minimization with an exponential loss

1
n

nÿ

i=1
e≠yif(xi)

2. Assuming an additive model of trees:

‚f(x) =
Bÿ

b=1
–b

‚f (b)(x)

with ‚f (b)(x) constrained to be a tree.
3. And greedy, stepwise optimization

argmin
–b,‚fb

nÿ

i=1
Exp

A

≠yi ·
A

b≠1ÿ

k=1
–k

‚fk(x) + –b
‚f b(x)

BB

26

ddaboost

Tgiveriseto weightsof

Empirical risk minimization
This general pattern:

1. We want to minimize:

EI{Y ”= f(X)}

2. And so we actually try to minimize its empirical version:

1
n

nÿ

i=1
I{yi ”= f(xi)}

3. But we can’t even do that for classification. So we introduce
a nicer loss L and minimize

1
n

nÿ

i=1
L(yi, f(xi))

27

Empirical risk minimization
Di�erent choices of L lead to di�erent methods and di�erent
trade-o�s.

Exponential loss:

L(yi, f(xi)) = e≠yif(xi)

Logistic loss:

L(yi, f(xi)) = log
1
1 + e≠yif(xi)

2

Hinge loss (SVM):

L(yi, f(xi)) = max {0, 1 ≠ yif(xi)}

28

Improvements

This intuition automatically leads to many improvements
I Shrinkage: Only add a small amount of each tree at a time.

Like taking smaller steps. Provides regularization. Use ‹–b
‚f b

with ‹ œ [0, 1].

I Subsampling: Each step only sees a fraction, ÷ of the data.
Gives improvements to variance (and thus performance), as
well as speed!

I Other losses: Why exponential loss?

29

we skipped this

Improvements: Why exponential loss?

(ESL Figure 10.4)

There are many losses that approximate 0-1 loss. Some can give
dramatically better performance in certain settings.

30

Improvements: Why exponential loss?

It turns out that the exponential loss leads to a particularly simple
algorithm, while the others do not. The optimization becomes
harder, and the updates lose their beautiful form.

Instead, at iteration b, the gradient gb œ Rn of the loss function is
found. The new classifier ‚f (b) is then fit to approximate this
gradient vector well. Hence the name: Gradient Boosting.

We won’t go into this too much but it’s worth knowing the term
gradient boosting. It is a very popular algorithm, at least in part
because it has a great package implementing it (xgboost).

31

Gradient Boosting for Squared Loss

I Compute the gradient of the loss with respect to the function
(doing this properly is a bit involved):

I In the boosting case:

I So gradient boosting is just incrementally fitting the residual
vector. This algorithm is sometimes called forward stagewise

regression.

32

T ly fCxD2 ly ftxD
negative residual

negativefit a tree
compute a residual ly FGMfit a tree to residual

c

Boosting discussion

In boosting, we tend to use very simple estimators, like very
shallow trees. These have low variance, but are high bias. Because
the sequence of trees can adjust for previous errors, they can fix
the bias!

The shallower trees can also lead to computational speedups in
evaluation, since you don’t have to evaluate 500 deep trees.

Think of the depth of your trees as allowing interactions. Two
splits let you interact two variables. You’ll often find that you want
somewhere between 2 and 10 splits in your trees.

33

Boosting discussion
Boosting is one of the most powerful classical methods. When
well-tuned, it can beat most other classifiers.

However, it requires more tuning than random forests.

Tuning parameters:
I Number of trees, B
I Amount of subsampling, ÷
I Amount of shrinkage, ‹
I Number of splits in each tree

You will find that random forest are di�cult to badly overfit. In
boosting, choosing B too large can in some cases cause overfitting
(though miraculously not always). Choosing it too small can give a
bad classifier.

B is the main tuning parameter. The others can be tuned more
roughly, since it doesn’t matter quite as much.

34

Ensemble Learning
One last comment on combining classifiers.

In boosting, we saw an approache to combining many weaker
predictors into a much stronger predictor

This combination is called an ensemble. There are many general
approaches to building ensembles (most of them were inspired by
boosting).

We will discuss random forests, bagging and possibly stacking next
class.

Ensembles can combine methods of di�erent types with di�erent
strengths, so that each can perform well in cases where it is strong.

Many contests are won in this way. In practice, there are
sometimes practical concerns about complexity and speed.

35

