
Completion of high-rank ultrametric matrices using
selective entries

Aarti Singh, Akshay Krishnamurthy, Sivaraman Balakrishnan and Min Xu
{aarti, akshaykr, sbalakri, minx}@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, 15203, USA

Abstract—Ultrametric matrices are hierarchically structured
matrices that arise naturally in many scenarios, e.g. delay
covariance of packets sent from a source to a set of clients in a
computer network, interactions between multi-scale communities
in a social network, and genome sequence alignment scores
in phylogenetic tree reconstruction problems. In this work, we
show that it is possible to complete n × n ultrametric matrices
using only n log2 n entries. Since ultrametric matrices are high-
rank matrices, our results extend recent work on completion of
n×n low-rank matrices that requires n logn randomly sampled
entries. In the ultrametric setting, a random sampling of entries
does not suffice, and we require selective sampling of entries using
feedback obtained from entries observed at a previous stage.

I. INTRODUCTION

As the size of modern datasets continues to grow, so does
the amount of missing data. This is because the scale and
complexity of systems such as the internet, social networks,
and biological evolution makes it impossible to monitor them
extensively under resource constraints. Thus, data matrices
are almost always so undersampled that simply discarding
rows/columns with missing entries is tantamount to throwing
away all the information.

Recently, several papers have investigated the problem of
data matrix completion for large-scale matrices, under the
assumption that the matrix of interest is low-rank [1], [2], [3],
[4] (or approximately low-rank [5]). These results show that
it is possible to reconstruct rank r matrices of size n×n from
only about nr log n entries, sampled uniformly at random. If
the rank r of the matrix is small, this implies a significant
saving of resources.

In many applications, however, the low rank assumption is
not very reasonable. The low rank property implies that the
matrix has few independent rows/columns, or there are few
latent factors (eigenvectors) that can represent the matrix. In
this paper, we consider one such scenario that arises in many
practical applications. Ultrametric matrices are hierarchically-
structured high-rank matrices that arise in problems where
the underlying data-generating mechanism corresponds to a
tree. A formal definition is given in section II. Informally, an
ultrametric matrix corresponds to a hierarchical block diagonal
matrix where, at each scale, the entries within a diagonal block
are higher than the matrix entries in off-diagonal blocks. See
Figure 1 for an example. The presence of fine-grained structure
implies that the matrix is high-rank. In fact, the eigenvalues of
these matrices (as shown in section II) do not lie in an `p ball
and hence the matrices cannot be considered as compressible

Fig. 1. (a) An ultrametric matrix and (b) The observed matrix is randomly
permuted, subsampled and noisy. The dark values correspond to unobserved
entries.

or approximately low-rank matrices. Thus, recent results for
low-rank matrix completion [1], [2], [3], [4], [5] cannot be
applied to ultrametric matrices.

Ultrametric matrices arise naturally in many applications.
For example, the delay or loss covariance of packets sent from
a source to a set of clients in a computer network forms an
ultrametric since the shortest path topology between the source
and clients is a tree [6], [7], where the internal nodes are
routers that divert traffic to different clients. The covariance
between clients is multi-scale as it depends on the length of
the shared path they have to the source. Hence, clients with
longer shared paths have higher covariance (that corresponds
to the blocks near the diagonal) and clients with shorter shared
paths have lower covariance (that corresponds to off-diagonal
blocks).

A similar example is phylogenetics or evolutionary tree
reconstruction where the pairwise genome sequence alignment
scores between species correspond to shared ancestory [8].
The pairwise scores are higher if the two species differentiated
recently and are lower if they split off earlier in the ancestry
tree.

As another example, communities in social networks de-
fined by interactions between users are often hierarchically
structured [9], [10] as users interact with friends on social
networks more often than they interact with family and col-
leagues, and even less frequently with other acquaintances
such as neighbors or friends of friends. A common model
for social network interactions and latent factors inducing the
interactions is the stochastic block model [9], [11], [12], where

interactions (modeled as edges) occur with higher probability
within a group than across groups. A hierarchically-structured
stochastic block model precisely corresponds to an ultrametric
matrix of interactions.

In all these applications, it is often hard to measure or
compute all the matrix entries due to resource constraints.
Measuring covariance between clients in a computer network
requires sending probe packets which increases network traffic,
aligning long genome sequences is computationally challeng-
ing and it is impossible to measure the interactions between
all users in a large social network. In this paper, we consider
the task of recovering ultrametric data matrices that arise in
these applications using few observed entries.

Specifically, we show that it is possible to recover the
hierarchical block structure of an n × n ultrametric matrix
up to a resolution of log n using n log2 n entries. This implies
that the ultrametric matrix can be recovered with small error
in Frobenius norm. This extends current results on low-rank
matrix completion since even hierarchically-structured high-
rank matrices can be recovered with n polylog n entries.
However, in the ultrametric setting, a random sampling of
entries does not suffice, and we require selective sampling
of entries using feedback obtained from entries observed at a
previous stage.

This paper is organized as follows. Section II mathemati-
cally formalizes the set up. Section III describes the methods
and results for recovering the ultrametric tree, and section IV
presents the results on recovery of matrix entries. We conclude
with open directions in section V.

II. PROBLEM SETUP

In this paper, we focus on an n×n ultrametric matrix M∗.
M∗ is defined as a matrix whose entries are a monotonically
descreasing function of an ultrametric and hence satisfy

M∗ij ≥ min{M∗ik,M∗jk} ∀i, j, k

with equality if M∗ik 6= M∗jk. This condition implies that
the matrix is hierarchically block structured [13] as shown in
Figure 1. Specifically, a block S×S corresponds to a subset of
indices S ⊆ {1, . . . , n}, and any two blocks are either disjoint
(S∩S′ = ∅) or nested (S ⊂ S′ or S′ ⊂ S) 1. Alternatively, the
matrix is characterized by an ultrametric tree, where the root
corresponds to the entire matrix, each internal node in the tree
corresponds to a block, and there are n leaves corresponding to
the finest blocks or diagonal entries. Let DS denote the set of
indicies corresponding to descendants (in the ultrametric tree)
of a node corresponding to S. Then the matrix entries indexed
by (S×S) \∪S′∈DS(S′×S′) are a constant, denoted by βS ,
where 0 < βS ≤ β∗ and βS < minS′∈DS βS′ . Additionally,
we assume that the blocks at each level are balanced, i.e.
the smallest block size at any level is ≥ η times the size
of the block at the previous level, where the balance factor
1/2 ≥ η > 0 is a constant.

1This formal definition of a block only characterizes the diagonal blocks.
The off-diagonal blocks will be defined in terms of the (diagonal) blocks.

The discernability of the structure of the matrix or ultramet-
ric tree depends on the variation of the matrix entries between
blocks. We define the “gap” as the smallest difference between
matrix entries in a block and any sub-block contained within
it, i.e.

gap = min
S

(min
S′∈DS

βS′ − βS)

This quantity will play the role of signal strength in our
analysis.

In this paper, we consider the situation where we don’t have
access to the entire ultrametric matrix. Instead, we have access
to a noisy oracle that we can query for matrix entries, and
it returns the queried entries corrupted by standard Gaussian
noise, i.e. an observed entry

Mij = M∗ij +Nij

where Nij are independently drawn from N (0, σ2). We will
query for a small number of such corrupted entries.

The above ultrametric and noise models suggest a natural
notion of Signal-to-Noise Ratio,

SNR = gap/σ.

We make high probability guarantees on exact recovery of
the blocks up to a certain resolution and bound the deviation
of estimated matrix entries from true entries on the recovered
blocks.

A. Spectrum of Ultrametric Matrices
Ultrametric matrices are high-rank matrices and their eigen-

values do not lie in an `p ball. Hence, these matrices cannot
be considered as compressible or approximately low-rank
matrices. To examplify this fact, we recall the following result
that characterizes the eigenspectrum of an ultrametric matrix
M∗ with a balanced (η = 1/2) binary tree where all matrix
entries corresponding to one level of the tree are a constant
i.e. βS = βS′ if S, S′ correspond to the same level in the
ultrametric tree [14]. Notice that for such a simple ultrametric
matrix, the entries only take one of log n+1 values b0, . . . , bL
corresponding to the L = log n levels of the ultrametric tree.

1) The eigenvectors of M∗ correspond to Haar wavelets.
Specifically, the eigenvector corresponding to largest
eigenvalue is constant, given as 1√

n
1 where 1 denotes

the all 1s vector, and the subsequent eigenvectors are
piecewise constants given as

v =

√
|S||S′|√
|S|+ |S′|

[
1

|S|
1S −

1

|S′|
1S′

]
where S, S′ are siblings in the binary ultrametric tree,
and 1S denotes a vector that is all 1 for indices in S
and 0 otherwise.

2) There are L + 1 unique eigenvalues of M∗ with the
smallest eigenvalue λ0 = b0 +

∑L
`=1 2`−1bi, and the `th

smallest unique eigenvalue (` ∈ 1, . . . , L) is 2`−1-fold
degenerate and given as

λ` = b0 +

L−∑̀
`=1

2`−1bi − 2L−`bL−`+1.

This implies that the unique eigenvalues λ` of the ultrametric
matrix M∗ are bounded between c1 ≤ λ` ≤ c2(n log n)/2`

where c1, c2 are constants > 0. Hence the matrix is full-rank
and not compressible since the `p norm of the eigenvalues∑
` 2`−1λp` increases with n.
If the ultrametric tree is not balanced, the Laplacian eigen-

vectors of the matrix are unbalanced Haar wavelets and the
eigenvalues can still be shown to scale as above, provided the
balance factor η is a constant bounded away from zero [15].

III. RECOVERY OF ULTRAMETRIC TREE

In this section, we consider methods for recovering the
ultrametric tree structure using few matrix entries.

In [16], we developed an active spectral clustering (ASC)
algorithm for recovering a hierarchical clustering using few
selective pairwise similarities. The algorithm is outlined below.

Algorithm 1 ASC (Active Spectral Clustering)
Input: Oracle, index set S, sampling parameter s
O ⊂ S of size s uniformly at random, Ω = O × S
Query oracle for MΩ

D ← diagonal matrix with Dii =
∑
j∈OMij

Compute Laplacian L = D −MO×O
v ← smallest non-constant eigenvector of L
C ← groups of indices of v that are constant
for i ∈ S \O do
C ′ ← arg maxC∈C

1
|C|
∑
j∈CMji

C ′ ← C ′ ∪ i
end for

Output: {C, ASC(Oracle, C, s)}C∈C

For a similarity matrix that corresponds to an ultrametric
with binary tree, the results of [16] imply the following
theorem.

Theorem 1. Suppose the SNR and balance factor η are
constant. Then there exists n0 ≡ n0(SNR, η) s.t. ∀n ≥ n0,
Algorithm 1 given index set S = {1, . . . , n} and a sampling
parameter s ≥ log2 n returns a collection of nested partitions
that is consistent with the ultrametric binary tree up to a level
where the blocks have size |S| ≥ s with probability > 1−n−1

using O(ns log n) entries of the matrix.

Thus, the algorithm can recover the ultrametric tree up to
resolution log2 n using O(n log3 n) matrix entries. We also
have the following corollary to Theorem 1.

Corollary 1. Suppose the SNR and balance factor η are
constant. Then there exists n0 ≡ n0(SNR, η) s.t. ∀n ≥ n0,
Algorithm 1 given index set S = {1, . . . , n} and a sampling
parameter s ≥ log2 n, with probability > 1 − 3n−1, queries
at least η2/2 · |S| log2 n entries in (S×S) \∪S′∈DS(S′×S′)
for all blocks of size |S| ≥ s.

Proof: Theorem 1 implies that, with probability > 1 −
n−1, every block of size |S| ≥ s is passed as an input
index set to the ASC algorithm at some iteration. Thus,

|S|s ≥ |S| log2 n entries are queried in every such block. Let
E denote the event under which Theorem 1 holds. Since the
blocks at each level are balanced, under event E, the expected
number of entries queried in (S × S) \ ∪S′∈DS(S′ × S′) are
at least η2|S|s. Using relative Chernoff bound [17], we get
that with probablity > 1−eηs/8 the number of entries queried
in (S × S) \ ∪S′∈DS(S′ × S′) for some block S with size
|S| ≥ s is ≥ η2|S|s/2. Taking union bound over all blocks,
we get with probability > 1 − 2ne−ηs/8 ≥ 1 − 2n−1 (for
n ≥ e16/η), under event E, the number of entries queried in
(S × S) \ ∪S′∈DS(S′ × S′) for all blocks of size |S| ≥ s is
≥ η2|S|s/2.

Remark: If the balance factor η and SNR are known, then
we can set the sampling parameter per iteration s > c · log n
for some constant c > 0 and recover the ultrametric tree up
to resolution of log n using O(n log2 n) entries of the matrix
with probability > 1− n−1.

The ASC algorithm proceeds by randomly sampling few
rows/columns of a sub-matrix at each iteration. Next, we
investigate if it is possible to recover the ultrametric matrix
if we randomly sample entries of the blocks/sub-matrices.
While the sampling of blocks at a level can be random, we
still need to focus sampling within sub-blocks as we recover
finer resolution blocks. A completely random sampling of
n polylog n matrix entries does not suffice to recover the
ultrametric tree up to resolution log2 n. See Proposition 1 in
[18] for a formal proof.

We consider the following algorithm that is an iterative
version of the method proposed in [19].

Algorithm 2 ZFS (Zero-fill Spectral)
Input: Oracle, index set S, sampling budget b.

Ω = b entries (i, j) ∈ S × S, i < j chosen uniformly at
random (without replacement)
Query Oracle for MΩ

Wij =

 2b/(|S|(|S| − 1)) if i = j
Mij if (i, j) or (j, i) ∈ Ω
0 otherwise

L← D −W where Dii =
∑
j∈SWij

v ← smallest non-constant eigenvector of L
C ← groups of indices of v that are constant

Output: {C, ZFS(Oracle, S ∩ C, p)C∈C .

The results of [19] imply the following result in the ultra-
metric setting where the observed entries are noiseless.

Theorem 2. Suppose the gap and balance factor η is con-
stant. Then there exists n0 ≡ n0(gap, η) s.t. ∀n ≥ n0,
any iteration of Algorithm 2 given index set S and budget
b < |S|(|S| − 1)/4, with probability > 1 − n−2 returns a
vector v that satisifes

‖v − u‖2 = O

(√
|S| log n

b

)
where u is the smallest non-constant Laplacian eigenvector of
the fully observed noiseless ultrametric submatrix MS×S .

Since the Laplacian eigenvectors of a noiseless binary
ultrametric matrix capture the tree structure, we can guarantee
recovery of the ultrametric tree if we can show that the `∞
bound on the eigenvector perturbation is smaller than any entry
of the Laplacian eigenvector (which scales as O(1/

√
|S|)

[15]). Following the arguments in [15] for converting an
`2 perturbation bound on Laplacian eigenvectors to an `∞
perturabtion bound, we get that with probability > 1 − n−2

‖v− u‖∞ = O
(
|S| logn

b

)
. This implies that we need at least

b ≥ |S|3/2 log n sampling budget at each iteration to guarantee
recovery of the first split of S in the ultrametric. Taking a union
bound over all blocks, we have the following corollary.

Corollary 2. Suppose the gap and balance factor η is
constant. Then there exists n0 ≡ n0(gap, η) s.t. ∀n ≥ n0,
Algorithm 2 given index set S = {1, . . . , n} and a sampling
budget b ≥ |S|3/2 log n per iteration returns a collection of
nested partitions that is consistent with the ultrametric binary
tree up to a level where the blocks have size |S| ≥ log2 n
with probability > 1 − n−1 using O(n3/2 log2 n) noiseless
entries of the matrix. Moreover, with probability > 1− 3n−1,
it is guaranteed to query at least η2/2 · |S|3/2 log n entries in
(S×S)\∪S′∈DS(S′×S′) for all blocks of size |S| ≥ log2 n.

The argument about number of queries in off-diagonal block
follows by arguments similar to proof of Corollary 1. Thus,
randomly sampling entries of the sub-matrix at each iteration
seems to require more measurements than randomly sampling
rows/columns at each iteration. It is not clear if this is a
limitation of the ZFS method or a fundamental difference
between the two measurement models.

The algorithms discussed in this section return a collection
of nested partitions ∪CC of the index set S and partially
sampled matrix entries ∪ΩMΩ. To recover an estimate M̂∗ of
the entire noiseless matrix M∗, we post-process the outputs
of these algorithms through Algorithm 3 as described in the
next section.

IV. RECOVERY OF MATRIX ENTRIES

We consider the following simple algorithm to recover the
matrix entries. If the algorithm is given a nested partition that
is consistent with the ultrametric tree structure up to a certain
level, the algorithm essentially knows S and DS for these
blocks and averages the entries observed within (S × S) \
∪S′∈DS(S′ × S′) to estimate βS .

The following theorem provides an entry-wise bound on the
largest deviation between the estimated and true matrix entries,
and on the Frobenius norm of the error matrix.

Theorem 3. Given a nested partition that is consistent with
the ultrametric tree structure up to a level where the blocks
have size |S| ≥ s, and given c|S| log2 n observed entries in
(S × S) \ ∪S′∈DS(S′ × S′) for every such block where c > 0
is a constant, with probability > 1−2n−1, Algorithm 3 yields

|M̂∗ij −M∗ij | ≤
1√
|S|
≤ 1√

s

Algorithm 3 RM (Reconstruct Matrix)
Input: Nested partitions ∪CC and partially sampled matrix

entries ∪ΩMΩ.
P = ∅
repeat
C′ ← the finest partition in ∪CC
for C ∈ C′ do
I = {(i, j) ∈ Ω : i ∈ C \ P, j ∈ C \ P}
M̂∗C\P = 1

I

∑
(i,j)∈IMij

end for
∪CC ← ∪CC \ C′
P ← P ∪ C′

until ∪CC = ∅

for all blocks of size |S| ≥ s and all (i, j) ∈ S × S, provided
n > e5σ2/c. Additionally, with probability > 1− 2n−1

‖M̂∗ −M∗‖2F :=
∑
ij

(M̂∗ij −M∗ij)2 = O(β∗2ns2)

where β∗ is the largest entry of the matrix M∗.

Proof: For entries that correspond to blocks with size
|S| ≥ s, we average the observed entries and bound the
deviation as follows: Let B = (S × S) \ ∪S′∈DS(S′ × S′).
Since |Ω ∩B| ≥ c|S| log2 n, we have

Pr

∣∣∣∣∣∣βS − 1

|Ω ∩B|
∑

(i,j)∈|Ω∩B|

Mij

∣∣∣∣∣∣ > 1√
|S|

= Pr

(∣∣∣∣N (0,
σ2

|Ω ∩B|

)∣∣∣∣ > 1√
|S|

)
≤
√
|S|e−

c log2 n

2σ2 ≤ n
1
2−

c logn

2σ2

The total number of such blocks ≤ 2n (bound on the total
number of nodes in the ultrametric tree), hence with proba-
bility > 1 − 2n

3
2−

c logn

2σ2 ≥ 1 − 2n−1 (for n large enough,
n > e5σ2/c), for all blocks of size |S| ≥ s and all (i, j) ∈ S×S

|M̂∗ij −M∗ij | ≤
1√
|S|
≤ 1√

s
.

Thus, the total squared error of entries for every block of
size |S| ≥ s is ≤ |S|. Now there are up to 1/η blocks with
ηn ≤ |S| ≤ (1−η)n, there are up to 1/η2 blocks with η2n ≤
|S| ≤ (1 − η)2n, there are up to 1/η3 blocks with η3n ≤
|S| ≤ (1− η)3n, and so on until there are up to 1/ηL blocks
with ηLn ≤ |S| ≤ (1− η)Ln. Therefore, the sum of squared
entries for all blocks of size ≥ log2 n is

≤ 1− η
η

n

(
1 +

1− η
η

+
(1− η)2

η2
+ . . .+

(1− η)L−1

ηL−1

)
≤ 1− η

η
n

[
(1− η)L

ηL
− 1

]
η

1− 2η

≤ η

1− 2η
n

= O(n)

where the last step holds since ηLn ≥ s and (1−η)L+1n < s
since L is the level at which the largest size of a cluster below
that level is < s.

For all levels with block sizes smaller than log2 n, the error
can be large. Suppose the largest entry of M∗ is bounded
by β∗, for matrix entries corresponding to blocks with size
smaller than s, we have |M̂∗ij −M∗ij | ≤ β∗. Since there are
≤ 1/ηL+1 ≤ n such blocks (since ηL+1n ≥ 1), the total
squared error of all entries in such blocks ≤ β∗2ns2. Thus,
the overall Frobenius norm

‖M̂∗ −M∗‖2F :=
∑
ij

(M̂∗ij −M∗ij)2 = O(β∗2ns2)

Thus, all entries of the ultrametric matrix corresponding to
blocks with size |S| ≥ log2 n can be recovered consistently
with high probability using the methods mentioned in the
previous section, and the overall Frobenius norm error in
recovering the matrix is O(β∗2n log4 n).

Remark: If the ultrametric is constant (no gap) for all
block sizes < log2 n, then all entries of the matrix can be
recovered consistently, while the rank of the matrix is still
high (n/ log2 n).

V. DISCUSSION

In this paper, we demonstrated that it is possible to re-
cover high-rank matrices that are hierarchically structured
using n log2 n (or n log3 n) selective matrix entries. There are
several interesting directions that can be developed further.

First, we only consider ultrametric matrices which require
that the matrix entries in each off-diagonal block is a constant.
In earlier work [18], [16] we have shown that it is possible
to recover the underlying tree structure even when the matrix
entries are not constant but there is a gap between the values
of matrix entries within a block and its sub-blocks. It is not
clear whether accurate guarantees on matrix recovery can be
provided in this setting.

Second, algorithm ASC works with randomly sampling
rows or columns of sub-matrices at each iteration. In many
applications, this might not be preferred e.g. in a computer
or social network scenario, this requires few nodes or users to
receive most packets or reveal their interactions with everyone.
The ZFS method we considered for randomly sampling entries
of sub-matrices at each iteration is suboptimal as it requires
many more observations. It is an open question whether a
method for recovering the ultrametric tree and matrix with
O(n polylog n) randomly chosen entries within submatrices
at each iteration exists.

On the other extreme, is it possible to be more adaptive and
do better, i.e. at each iteration instead of randomly sampling
rows/columns or entries of sub-matrices, can we selectively
sample the submatrices? In [18] we demonstrated a method
that, in the noiseless setting, recovers the ultrametric tree
using only n log n entries with no requirements on the balance
factor of the tree. However, it is not clear whether that can be

extended to handle noise and whether it queries enough entries
to guarantee recovery of the matrix.

Finally, it should be possible to recover more general hier-
archically structured matrices that are not ultrametrics, e.g. a
rectangular matrix that contains randomly placed submatrices
with hierarchical structure. Also, it would be interesting to
characterize the tradeoff between how many matrix entries are
observed and the resulting accuracy in matrix recovery.

ACKNOWLEDGMENT

This research is supported in part by AFOSR under grant
FA9550-10-1-0382 and NSF under grant IIS-1116458.

REFERENCES

[1] J.-F. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding al-
gorithm for matrix completion,” SIAM Journal on Optimization, vol. 20,
no. 4, pp. 1956–1982, 2010.

[2] E. J. Candés and B. Recht, “Exact matrix completion via convex
optimization,” To appear in Foundations of Computational Mathematics,
vol. 9, no. 6, pp. 717–772, 2008.

[3] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 925–936, 2010.

[4] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion from
noisy entries,” Journal of Machine Learning Research, 2010.

[5] S. Negahban and M. J. Wainwright, “Estimation of (near) low-rank
matrices with noise and high-dimensional scaling,” in International
Conference on Machine Learning (ICML), 2010.

[6] N. Duffield and F. L. Presti, “Network tomography from measured end-
to-end delay covariance,” IEEE/ACM Transactions on Networking, 2004.

[7] M. Coates, A. Hero, R. Nowak, and B. Yu, “Internet tomography,” IEEE
Signal Processing Magazine, vol. 19, no. 3, pp. 47–65, May 2002.

[8] J. Kim and T. Warnow, “Tutorial on phylogenetic tree estimation,” in
Intelligent Systems for Molecular Biology, 1999.

[9] P. Holland, K. Laskey, and S. Leinhardt, “Stochastic blockmodels: Some
first steps,” Social Networks, vol. 5, no. 109–137, 1983.

[10] M. Schweinberger and T. Snijders, “Setting in social networks: A
measurement model,” Sociological Methodology, vol. 33, pp. 307–342,
2003.

[11] K. Rohe, S. Chatterjee, and B. Yu, “Spectral clustering and the high-
dimensional stochastic block model,” Annals of Statistics, vol. 39, no. 4,
pp. 1878–1915, 2011.

[12] D. Sussman, M. Tang, D. Fishkind, and C. Priebe, “A consistent dot
product embedding for stochastic blockmodel graphs,” Journal of the
American Statistical Association, Accepted, 2012.

[13] N. Jardine and R. Sibson, Mathematical taxonomy. New York: Wiley,
1971.

[14] A. T. Ogielski and D. L. Stein, “Dynamics on ultrametric spaces,”
Physical Review Letters, vol. 55, pp. 1634–1637, 1985.

[15] S. Balakrishnan, M. Xu, A. Krishnamurthy, and A. Singh, “Noise
thresholds for spectral clustering,” in Neural Information Processing
Systems (NIPS), 2011.

[16] A. Krishnamurthy, S. Balakrishnan, M. Xu, and A. Singh, “Efficient ac-
tive algorithms for hierarchical clustering,” in International Conference
on Machine Learning (ICML), 2012.

[17] T. Hagerup and C. Rüb, “A guided tour of chernoff bounds,” Inf.
Processing Lett., vol. 33, no. 6, pp. 305—308, 1990.

[18] B. Eriksson, G. Dasarathy, A. Singh, and R. Nowak, “Active clustering:
Robust and efficient hierarchical clustering using adaptively selected
similarities,” in International Conference on Artificial Intelligence and
Statistics, AISTATS, 2011.

[19] O. Shamir and N. Tishby, “Spectral clustering on a budget,” in Artificial
Intelligence and Statistics (AISTATS), 2011.

