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ABSTRACT
One problem that arises with the increasing numbers of stu-
dents in Massive Open Online Courses (MOOCs) is that of
student evaluation. The large number of students makes it
infeasible for the instructors or the teaching assistants to
grade all assignments, while the present auto-grading tech-
nology is not feasible for many topics of interest. As a result,
there has recently been a great push for employing peer-
grading, where students grade each other, since the number
of graders automatically scale with the number of students.
However, in practice, peer-grading has been observed to have
high error rates and has come under serious criticism.

In this paper, we take a statistical approach towards un-
derstanding the feasibility of peer-grading for MOOCs. Un-
der simple (yet general) models, we show that peer-grading
as a standalone will not scale, i.e., as the number of stu-
dents increases, the expected number of students misgraded
will grow proportionately. We then consider a hybrid ap-
proach that combines peer-grading with auto-grading. In
this setting, an automated approach is used for ‘dimension-
ality reduction’, a classical technique in statistics and ma-
chine learning, and peer-grading is employed to evaluate this
lower dimensional set of answers. We show that this alter-
native approach has the potential to scale.

While most current research on assessment in MOOCs is
empirical, our more theoretical approach provides a funda-
mental understanding of the errors observed in current grad-
ing systems, and provides a direction for future research to
overcome those errors.
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1. INTRODUCTION
We discuss the scalability of grading, with special atten-
tion given to peer grading in Massive Open Online Courses
(MOOCs). For MOOCs under budget constraints, instruc-
tor grading becomes infeasible as course sizes grow. Large
courses require alternative approaches, such as auto-grading
or peer-grading.

We focus our discussion on MOOCs for which auto-grading
using pre-trained models is difficult. For subjective topics
and complex problems, it is often difficult to design machine
grading systems which are accurate [1]. In these cases, it is
important that humans perform the grading.

Peer-grading is a system of grading where students taking
a course are graded by other students in the same course.
Peer-grading is a natural choice for MOOCs since the to-
tal number of graders in a peer-grading system automat-
ically grows in proportion to the number of students en-
rolled. For instance, Coursera employs peer-grading in its
human-computer interaction (HCI) course. Since the stu-
dents are not expert graders, in this peer-grading system,
the answer provided by each student is graded by 3 to 5
students. The final grade of a student is computed as the
median of these individual grades [7]. Algorithms for aggre-
gating peer-grades using probabilistic models are proposed
in [13].

Research has shown (e.g., [7, 8]) that current auto-grading
and peer grading systems make a large number of mistakes.
Qualitative observations about the inaccuracy of MOOC as-
sessment have led much criticism of auto-grading and peer-
grading [1, 14]. For MOOC course credits to gain increased
acceptance, these errors must be reduced.

In this paper, we view the problem of assessments in MOOCs
through the lens of statistical analysis. Our approach is or-
thogonal to the largely empirical nature of the works in the
literature in this field. We study the scaling behavior of peer
grading, i.e., the behavior when the number of students gets
large. Our analysis reveals that under reasonable assump-
tions, these systems will incorrectly grade a constant fraction
of the students in expectation. This constant fraction is not
a problem for small courses, where an instructor can han-
dle complaints from students who feel they were misgraded.
This is not a scalable solution for large courses since student



complaints will overwhelm instructors. This gives some in-
sight into why current peer grading systems misgrade many
students.

Current efforts to improve grading have examined many as-
pects: improving auto-grading models [9, 17, 6], improv-
ing models for aggregating peer-grades [13], combining auto
and peer grading [8, 2], and dimensionality reduction [3, 12,
15, 5, 10]. These efforts have shown useful improvements
in practice. However, we argue that these methods do not
change the scaling behavior of grading; at most, they de-
crease the constant fraction of misgraded students.

We then show that, on the upside, this scaling behavior may
be improved via a combination of current methods used in
MOOC assessments. Specifically, a combination of auto-
and-peer-grading with ‘dimensionality reduction’ has the po-
tential to create vanishing error rates, i.e., error rates which
approach zero as MOOC course sizes grow. We outline what
such a system would look like.

Importantly, our proposed framework is flexible: it allows
for different grade collection systems, is independent of the
algorithm employed for grade aggregation, and can also ac-
commodate improvements such as adaptive grader assign-
ments.

2. SCALING ANALYSIS OF
PEER-GRADING

We are interested MOOCs which are massive and open. In
other words, the courses are very large and offered for free
or at low costs. This cost constraint prevents the number of
instructors from scaling proportionally to the number of stu-
dents. Thus, we may assume that instructors cannot hand-
grade every student’s answer.1 Instead, grading is done via
peer grading, where students evaluate their peers’ answers,
and/or auto-grading, where a computer software evaluates
the students’ answers.

Since grading requires considerable effort, we expect the av-
erage student to grade at most a few peers. We assume that
most student graders perform better than random guessing
but are imperfect, i.e., frequently make errors in the grading;
empirical studies have shown this to be true (e.g., [7]). For
our analysis, we assume that there is a “true” grade for each
students’ answer. The grades provided by expert graders
can be assumed to match the true grades, but students (i.e.,
peer-graders) provide only noisy measurements of the true
grade.

Theorem 1 below analyses the scaling behavior of typical
peer-grading systems described above. Under weak assump-
tions regarding the setting, we show that in expectation,
the grades of a constant fraction of students will be in error.
We then extend our results to scenarios where experts such
as the instructor or teaching assistants also assess a subset
of the answers, and further when these assessments may be
used to choose which student (peer) grades which answer.
In an attempt to keep our claims independent of the model

1The term ‘answer’ will be used generically to refer to exam-
solutions, homeworks, or any other material submitted for
evaluation by the students.

and inference algorithm, we consider a generic grading sce-
nario and then show that under this scenario, the grades
obtained from the peers for a constant fraction of students
having a specific true grade are indistinguishable from those
for students having a different true grade.

Theorem 1. Consider the following four settings:

(a) There are d students enrolled in the course. Each student
provides one answer, and these d answers must be graded.
There are b possible values of the grade (in other words, the
answers must be binned into b ordered bins). Each grader as-
signs the answer to one of these b bins. Each (peer-) grader
grades k answers, and each answer is graded by k (peer-)
graders. The choice of who-grades-whom is fixed but arbi-
trary. We assume that a constant fraction γ ∈ (0, 1) of the
students are imperfect graders while the remaining fraction
(1 − γ) of the students are perfect graders (the value of γ
may be known to the inference algorithm). Consider any
fixed p0, p1, p2u, p2d ∈ (0, 1] with p0 + p1 + p2u + p2d = 1.
An imperfect grader, with probability p2u, gives a grade that
is two bins higher than the true grade; with probability p2d,
gives a grade that is two bins lower than the true grade;
with probability p1, gives a grade that is one bin away from
the true grade; and with probability p0, gives a grade equal
to the true grade.2 A perfect grader’s evaluation always ex-
actly matches the true grade of the answer being graded. The
constants b, k, γ, p0, p1, p2u, p2d are all independent of the
number of students d.

(b) In addition to the grading process of (a), a constant frac-
tion ζ ∈ [0, 1) of answers are also graded by experts who
grade perfectly.

(c) The grading process is adaptive: The first stage is a cal-
ibration stage where experts grade a constant fraction ζd of
answers, and each peer-grader grades a constant number of
answers. Next, based on the results of the first stage, the
choice of which student grades which answer for the remain-
ing part is made. Finally, the grading process of (a) is ap-
plied with this choice of who-grades-whom.

(d) There are only two possible grades (‘pass’ and ‘fail’), and
an imperfect grader grades an answer correctly with probabil-
ity p0 and makes a grading error with a probability (1− p0).

Under each of these settings, in expectation, the final grades
of a constant fraction of students will be in error.

The scaling results derived here imply that if the distribution
of the quality of peer-graders is independent of the number
of enrolled students, then as the number of students in the
course increases, the number of misgraded students will in-
crease proportionately. The student experience will suffer
in such a scenario, and instructors may be faced with an
overwhelming number of student complaints.

2In order to simplify the setting, we ignore the possible non-
existence of a bin that is ‘two bins higher’ or ‘two bins lower’;
this assumption is inconsequential to the scaling law.



The remainder of this section discusses the assumptions and
some extension of Theorem 1. The assumption of having
the parameter γ independent of the total number of enrolled
students d means that the proportion of good students does
not (significantly) increase when the number of total stu-
dents scales up. We assume b to be independent of d since
it is typical of courses to keep the number of grade-levels
independent of the number of students enrolled. The inde-
pendence of parameters p0, p1, p2u, p2d from d means that
the average abilities of the students do not vary (signifi-
cantly) when the number of students enrolled in the course
increases. Finally, and very importantly, we assume k to be
a constant (and not increasing in d) since grading is a task
that requires significant time and effort on the part of the
grader, and we must impose a limit on the number of papers
the students need to peer-grade.

Given the formulation of Theorem 1, the math behind the
proof is fairly simple. We show that under the four set-
tings considered in the theorem, the probability that any
individual student will be in error is lower bounded by a
constant, which implies that in expectation, a constant frac-
tion of students will be in error. Details of the proofs are
provided in the appendix. A similar argument holds for
the case when the grades collected from the graders are on
a finer scale (with more than b levels), or when the peer-
grading is ordinal, i.e., where students are asked to compare
two or more answers instead of assigning numeric scores to
the answers [16]. Peer- grading may be generalized to also
include grading by people not taking the course, e.g., by peo-
ple who have previously taken the course. If the number of
such people remains linear in the number of students, then
arguments similar to those of Theorem 1 continue to apply.

The setting of Theorem 1 considers adaptivity of only upto
two stages, and this stems from the requirement of provid-
ing timely feedback to students [7]. In order to ensure fair-
ness, the use of extraneous information about the students’
skills is generally avoided in the grading process [13], as as-
sumed in the theorem. One could potentially obtain some
information about the students’ grading abilities from their
performance in previous homeworks or tests: we conjecture
that using this information will not change the scaling laws
as long as the number of homeworks/tests remains indepen-
dent of the number of students; attempting to prove this
remains a part of future work. Finally, the model consid-
ered in Theorem 1 also subsumes ‘score-based’ models, as
described in Corollary 2 below.

Corollary 2. Consider a setting where each answer has
a true real-valued ‘score’, and a quantization of the score
forms a grade. Assume without loss of generality that the
score of any answer can take any value in the interval [0, 1],
and that the set of k bins (grades) is a partition of this in-
terval into k non-empty intervals. The true ‘scores’ of the d
answers are distributed on this interval such that each inter-
val contains some constant fraction of answers. The eval-
uation of an answer by a peer-grader is modeled as adding
a noise to the true score of that answer, where the noise is
distributed i.i.d. with some cdf F on [−1, 1] (e.g., a trun-
cated Gaussian distribution). The grade given by the peer to
an answer is a quantization of this evaluation according to

the grade-intervals. Assume that the distribution F assigns
a non-zero probability to every non-empty interval in [−1, 1].

If the grading process from any part (a)-(d) of Theorem 1
is executed under this setting, then in expectation, the final
grads of a constant fraction of students will be in error.

3. BREAKING THE BARRIER VIA
DIMENSIONALITY REDUCTION

One possible means of breaking the barrier of a constant
fraction of answers being graded erroneously is dimension-
ality reduction. We discuss two methods for dimensionality
reduction: clustering and featurization. Clustering is the
more intuitive method, but featurization is more general.
These methods combine auto-grading with peer-grading in
a manner to be discussed in the sequel. The peer-grading in-
terface can remain the same as before, where students grade
answers submitted by their peers.

3.1 Clustering
Suppose we use a computer program to cluster the collection
of all d answers provided by the d students, with respect to
the similarity of their content. The clustering algorithm is
such that ideally, within each cluster, all answers have the
same true grade. Note that multiple clusters could have the
same true grade. Given this assumption, grading any one
answer in the cluster effectively grades all answers in the
cluster. The total number of answers to grade is effectively
reduced.

A cluster can be graded by collecting peer-grades for any
answer within the cluster. These grades may be aggregated
via any reasonable algorithm, for instance, taking a median
of the received grades. Finally, the answer of any student is
assigned the grade that its cluster receives.

The following theorem shows that a good performance of the
clustering algorithm can reduce the number of erroneously
graded students to a vanishing fraction. Here, D(p1||p2) de-
notes the Kullback-Liebler divergence between two Bernoulli
distributions having parameters p1 and p2 respectively.

Theorem 3. Consider the following grading process:
There are d students. A clustering algorithm partitions the
answers of these students into ∆ clusters, and one
(representative) answer is selected from each cluster. The
set of grades have only two possible values: pass or fail.
Each student grades a constant number k of
(representative) answers, and each (representative) answer
receives an equal number of grades. The final grade given
to all answers in a cluster is decided via a majority vote on
the (peer-) grades obtained by the answers in the cluster.

First assume that the clustering algorithm is perfect, so that
all answers in a cluster share the same true grade. There
are no perfect graders. Each grader grades correctly with
probability p0 ∈ (0.5, 1] and makes an error with probability
(1− p0). Then, if the number of clusters satisfies ∆ ≤ c d

log d
and the number of answers graded by each student satisfies
k ≥ c

D(0.5||p0)
for some universal constant c, then the number

of students who are misgraded (in expectation) is a constant
independent of d.



Now, if the clustering algorithm is imperfect, but erroneously
clusters some β(d) (non-representative) answers where β(d)
is sub-linear in d, then the number of students who are mis-
graded in expectation is upper bounded by the sum of β(d)
and the constant obtained above. As a result, the fraction of
answers that are misgraded goes to zero as the total number
of answers d grows.

The theorem says that if the answers can be clustered into
clusters of average size of order log d or higher, then even
when each student can grade only a constant number of an-
swers, the number of answers graded incorrectly will be in-
dependent of the number of students d. The system can now
scale to accommodate arbitrarily large numbers of students
without the worry of the number of grading errors blowing
up. The theorem assumes that the number of clusters is not
too large: this may be true for many subjects of interest [3,
12].

The theorem assumes a good performance of the clustering
algorithm. This may seem contradictory to our earlier dis-
cussion on the performance of auto-grading algorithms sug-
gesting that they do not perform very well for topics that are
subjective in nature. To this end, we note that while auto-
grading requires the algorithm to understand the semantics
of each answer in order to grade, clustering only requires
understanding the features on which similarity testing must
be performed. The job of clustering may thus be viewed
as a subset of the superior task of auto-grading. Indeed,
designing algorithms for clustering answers for educational
assessment is an area of active research in the community,
e.g., [3, 12, 15, 5, 10].

Let us now discuss the assumption on the performance of the
clustering algorithm from a statistical perspective. We have
assumed that the number of answers clustered erroneously
grows sub-linearly in d. In other words, we assume that
the fraction of answers clustered incorrectly reduces with
an increase in the total number of answers. An intuitive
justification of this assumption is that clustering is often
performed by comparing answers with each other, and as
the total number of answers d grows, the number of answers
(in each cluster) available for comparison also grows. This
intuition is supported by the literature on statistical guar-
antees for clustering problems (e.g., [4]) which we employ
below to formalize the intuition stated above. The setting
considered in the literature [4] does not exactly match our
requirements, nevertheless, the results are highly encourag-
ing due to the considerable similarity with our setting and
the strong guarantees available.

Proposition 4. (Adaption of [4, Theorem 2.2])
Consider a clustering algorithm that operates in the
following manner. The algorithm has a black-box
comparator that, given any pair of answers, correctly
identifies whether they belong to the same cluster or not
with a probability at least 1

2
+ ε (independent of all other

comparisons). Here, ε ∈
(
0, 1

2

]
is a fixed value, unknown to

the algorithm. Suppose there are ∆ ≤ c1ε
2 d

log d
clusters, of

equal size, and the value of ∆ is known to the algorithm.
Here, c1 is a specific universal constant. Then there exists
a clustering algorithm such that the expected number of

answers clustered incorrectly is upper bounded by a
universal constant (independent of d).

Remark 1. The setting of [4, Theorem 2.2] differs from
our setup in Theorem 3 in the following respects: We as-
sume the average cluster-size to be at least c log d (for some
constant c > 0) and further require that the clustering algo-
rithm does not know the sizes of these clusters; [4, Theorem
2.2] assumes that the sizes of all clusters are identical, lower
bounded by c log d, and the size of each cluster is known to
the algorithm. Moreover, for many parameter regimes of in-
terest, no polynomial-time clustering algorithms are known.
On the other hand, the results of [4, Theorem 2.2] provide
a very strong guarantee in that only O(1) answers are in
wrongly clustered (in expectation), whereas for the purpose
of Theorem 3, a guarantee of o(d) errors would suffice.

The scaling analysis presented in this section suggests that
reducing the dimension of the answers by a logarithmic fac-
tor may suffice for designing a scalable grading system. Pre-
vious works on clustering which we reference used clustering
to aid instructors in grading. This approach can lessen the
burden on instructors, who can assign grades to groups of
answers. Our analysis motivates and theoretically justifies
the use of clustering tools [3, 12, 15, 5, 10] for massive open
online courses, where in conjunction with peer-grading, we
show that they can help achieve scalability in the grading
process.

3.2 Featurization
We briefly discuss a more general type of dimensionality re-
duction. Our clustering method assumes that many answers
are similar enough to be declared equivalent by a clustering
algorithm. One could generalize to assume that parts or as-
pects of many answers are similar and can be compared or
clustered; we describe this as featurization, where the con-
tent of an answer is summarized by a set of features.

Suppose that answers may be described by ∆ features. As-
sume that the grade of each answer may be computed as
a function of these features; e.g., a simple such function for
pass/fail grades would be thresholding a weighted sum of the
features. Then we have reduced the problem of grading to
a very traditional regression setting: answers are examples,
features are computed algorithmically for each example, and
peer-grades provide noisy labels for the examples.

The regression model is simply another aggregation method
for peer-grades. Assume for now that we use a general-
ized linear model y(i,t) ∼ f(wTx(i)) + ε(i,t), where x(i) is

the feature vector for answer i, y(i,t) is the tth peer-grade
for answer i, f(·) is the inverse link function, and ε(i,t) is
the noise added by the peer-grader. This model generalizes
simple peer-grading systems which treat all answers inde-
pendently: d boolean features are indicators corresponding
to the d answers, so the feature vector x(i) for answer i has
a “1” for feature i and “0” elsewhere. The model also gener-
alizes clustering: we have ∆ boolean features corresponding
to the ∆ clusters.

This setup could allow grading systems to draw on extensive
research on feature engineering and modeling. The success



of previous work on feature-based clustering of answers in
MOOCs indicates that useful features can be found [3]. The
fact that current aggregation methods for peer-grades can
be generalized by simple regression models indicates that
such models are reasonable.

Depending on the choice of the regression model, one can
achieve scaling results similar to those for clustering. E.g.,
consider a logistic regression model (with a logit link
function) to classify answers as pass/fail. Then previous
work [11] on logistic regression has shown that, with ∆
features and Θ(d) samples (peer-grades), it suffices to have
∆ = o(d).

Previous work has considered combining auto-grading with
peer-grading [8]. However, that work separated
auto-grading and peer-grading into two stages, rather than
combining them into a joint model. The first stage used
auto-grading with expert-labeled examples to compute
initial grades, and the second stage used peer-grading to
improve grades based on confidences in the first stage.
This separation makes it unclear whether scaling laws are
changed: either auto-grading makes a constant fraction of
grading errors (in which case a constant fraction of errors
remain after peer-grading as well), or auto-grading makes a
vanishing fraction of errors (in which case peer-grading
becomes unnecessary as class sizes grow).

4. CONCLUSIONS
In this paper, we gave a rudimentary analysis of the scaling
properties of various grading mechanisms in MOOCs. We
saw that under very simple and general models, the kinds
of peer-grading systems employed today will not scale. We
then showed that combining (auto-) dimensionality reduc-
tion and peer-grading has the potential to scale. Dimen-
sionality reduction is already an active topic of research [3,
12, 15, 5, 10], and the proposal of combining it with peer
grading falls under the more general paradigm of combining
machine and human intelligence [8, 2].

While most current research on assessment in MOOCs is
empirical, this paper provided a more theoretical approach,
helping understand the fundamental sources of the errors
observed in current grading systems, and a path for future
research to overcome those errors. Accurate, reliable, and
scalable assessment will help to pave the way for MOOCs to
democratize education.
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APPENDIX: PROOFS

Proof of Theorem 1.
(a) Consider any one student. When the assignment of who-
grades-whom is made, the grading capabilities of the stu-
dents are unknown. Hence for this particular student, the
set of k graders are distributed uniformly at random among
the remaining (d − 1) students. The probability that the k

graders for this student are all imperfect is
((d−1)γ

k )
(d−1
k )

. Apply-

ing standard bounds on binomial coefficients, we get that

this quantity is lower bounded by γk

ek
. Now, the probability

that the student is graded two bins lower by each of these
graders is pk2d. When this happens, this student is indistin-
guishable from a student whose true grade is two bins lower
and is graded correctly by all of its (peer-) graders. This
happens with a probability at least

pk2dγ
k(1− γ + p0γ)k

2ek
,

which is a constant independent of d. Using the linearity of
expectation, we get that the expected number of students
whose grades are in error is lower bounded by

d
pk2dγ

k(1− γ + p0γ)k

4ek

which is linear in d.

The proof above considered inferring the grade of a student
from only the quality of her answer. In some situations, one
may try to evaluate the student based on her performance in
the peer-grading process as well. We argue that even in this
case, the scaling laws will remain the same since the prob-
ability that a specific student’s peer-grading performance is
identical to that of another student whose true grade is two
bins lower is non-zero and independent of d. The probabil-
ity of these two students being indistinguishable therefore
remains non-zero and independent of d, thereby ensuring
that the expected number of students graded erroneously is
lower bounded by a constant fraction of d.

(b) Consider any imperfect grader. Consider the event that
this imperfect grader perfectly grades all the answers that
are also graded by experts. The probability of this event is
lower bounded by pk0 (of course the grader does not know
which answers are graded by experts, and the event repre-
sents the random chance of grading these answers perfectly).
Now such an event would make an imperfect grader indistin-
guishable from a perfect grader. As a result, for any answer
that is not graded by an expert, a lower bound on the prob-
ability that this answer is indistinguishable from an answer
whose true grade is two bins lower is

pk2dγ
kpk

2

0 (1− γ + p0γ)k

2ek
.

Thus the expected number of students whose grades are in
error is lower bounded by

d
pk2dγ

kpk
2

0 (1− γ + p0γ)k(1− ζ)
4ek

,

which is linear in d.
(c) The argument in the proof of part (b) continues to hold
in this setting. In (b), the performance of an imperfect

grader on the answers that are graded by experts is indistin-
guishable from the performance of a perfect grader. When
this happens, there is no information about these imperfect
graders available for designing the second stage.

(d) Arguments analogous to the previous parts continue to
hold, with p2d replaced by (1− p0).

Proof of Corollary 2.
First observe that our assumptions imply that a constant
fraction of students have a grade that is the maximum pos-
sible, and another constant fraction of students have a grade
that is two bins below the maximum possible. The final
grade received by an answer depends only on these (quan-
tized) grades given by the peer-graders, and this brings us
to precisely the setting of Theorem 1. Since the distribution
F assigns a non-zero probability to any non-empty inter-
val, the probabilities of an imperfect (peer-) grader giving
a grade that is two bins lower or a grade identical to the
true grade are both non-zero, and i.i.d. for all evaluations.
This ensures p0 > 0 and p2d > 0 in the setting of Theo-
rem 1. Applying the proof of Theorem 1 gives the desired
result.

Proof of Theorem 3.
First consider the setting of a perfect clustering algorithm.
The total number of grades obtained from the students is kd.
Since there are ∆ clusters, each cluster receives kd

∆
grades

(we shall ignore any rounding effects for now since these are
inconsequential to the scaling behavior). Each grade is cor-
rect with a probability p0 ∈ (0.5, 1], and hence, applying the
Chernoff bound, we get that the probability of misgrading
any individual cluster is upper bounded by

exp

(
−D(0.5||p0)

kd

∆

)
.

Thus, in expectation, the total number of misgraded stu-
dents is

d exp

(
−D(0.5||p0)

kd

∆

)
.

Substituting ∆ ≤ c d
log d

and k ≥ c
D(0.5||p0)

as assumed in the

statement of the theorem, we get that the total number of
misgraded students is O(1) in expectation.

If the clustering algorithm incorrectly clusters β(d) (non-
representative) answers, with β(d) = o(d), then the expected
total number of errors is o(d) +O(1) which is still o(d).

Proof of Proposition 4.
The parameters p, q, n and K in [4, Theorem 2.2] are re-
spectively lower bounded by 1

2
+ ε, upper bounded by 1

2
− ε,

equal to d and equal to d
∆

in our setting. The assumption

∆ ≤ c1ε
2 d

log d
, with c1 being large enough, ensures that the

condition [4, Equation (7)] required by the theorem is sat-
isfied. While the statement of [4, Theorem 2.2] guarantees
correct clustering of all answers with a probability at least
(1 − c2d−c3) for some constants c2 and c3, the proof of the
theorem establishes the value of the constant c3 as 1. It
follows that the number of answers clustered incorrectly is
upper bounded by d×

(
c2d
−c3

)
= c2.
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