
Lecture 5: Regular Expressions
Statistical Computing, 36-350

Wednesday September 23, 2015

In our last thrilling episode

• Characters and strings
• Combining strings, splitting strings
• Basic counting with strings
• We need a way to work with patterns of strings

Outline

• Patterns of strings: regular expressions
• Grammar of regular expressions
• Splitting, searching, replacing
• Capture groups

Why we need string patterns

Split entries in a data file separate by commas:

strsplit(text, split=",")

Split entries in a data file separated by one space:

strsplit(text, split=" ")

Split entries in a data file separated by a comma, then a space:

strsplit(text, split=", ")

Split entries in a data file separated by a comma, then optionally some unspecified number of spaces:

???????

Regular expressions

• We need a language for telling R about patterns of strings
• The most basic such language is that of regular expressions
• Regular expressions match sets of strings
• Start with string constants, and build up by allowing “this and then that”, “either this or that”, “repeat

this”
• These rules get expressed in a what is called a grammar, with special symbols and rules
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Grammar of regular expressions

• Every string is a valid regexp. E.g.,

– "fly" matches end of "superfly", "why walk when you can fly"

– "fly" does not match "time flies like an arrow", "fruit flies like bananas", "a
banana flies poorly"

• OR of two regexps is a regexp, denoted by |. E.g.,

– "fly|flies" matches any of the above strings

• Concatenation of two regexps is a regex. E.g.,

– "time|fruit fly|flies" tries to match any combination of the first term and then the second

• Parentheses define groups. E.g.,

– "(time|fruit) (fly|flies)" is the same as above, but perhaps easier to read

grep()

grep() scans a character vector for matches to a regexp

grep(pattern, x, value)

Returns either indices of matches (when value=FALSE, the default), or matching strings (when value=TRUE)

string.vec = c("time flies when you're having fun in 350",
"time does not fly in 350, because it's not fun",
"Flyers suck, Penguins rule")

grep("fly", string.vec) # Default is value=FALSE

## [1] 2

grep("fly", string.vec, value=TRUE)

## [1] "time does not fly in 350, because it's not fun"

grep("fly|flies", string.vec, value=TRUE)

## [1] "time flies when you're having fun in 350"
## [2] "time does not fly in 350, because it's not fun"

string.vec.2 = c("time flies when you're having fun in 350",
"fruit flies when you throw it",
"a fruit fly is a beautiful creature")

grep("time|fruit fly|flies", string.vec.2, value=TRUE)
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## [1] "time flies when you're having fun in 350"
## [2] "fruit flies when you throw it"
## [3] "a fruit fly is a beautiful creature"

grep("(time|fruit) (fly|flies)", string.vec.2, value=TRUE)

## [1] "time flies when you're having fun in 350"
## [2] "fruit flies when you throw it"
## [3] "a fruit fly is a beautiful creature"

Special characters, character classes

• Some characters, like parentheses, are special and aren’t interpreted literally
• Another example are square braces, used to indicate ranges. E.g.,

– [a-z] for any lowercase character between a and z
– [A-Z] for any uppercase character bewteen A and Z
– [0-9] for any number between 0 and 9
– [a-m]|[N-Z]|[1-5] for any lowercase character between a and m, uppercase character between N

and Z, or number between 1 and 5
– [:punct:] for punctuation marks
– [:space:] for white space characters (including tabs and line breaks)

• Another example is the caret symbol, which negates what comes after it. E.g.,

– [ˆ0-9] for anything but a number between 0 and 9
– [ˆaeiou] for anything but a lowercase vowel

• Another example is the period ., which stands for any character, no brackets needed

string.vec.3 = c("R2D2","r2d2","RJD2","RT85")
grep("[A-Z][0-9]", string.vec.3, value=TRUE)

## [1] "R2D2" "RJD2" "RT85"

grep("[A-Z][0-9][A-Z][0-9]", string.vec.3, value=TRUE)

## [1] "R2D2"

grep("[A-Z|a-z][0-9][A-Z|a-z][0-9]", string.vec.3, value=TRUE)

## [1] "R2D2" "r2d2"

grep("[A-Z][^0-9][^0-9][0-9]", string.vec.3, value=TRUE)

## [1] "RJD2"

Note that this kind of logic is going to get tedious with longer expressions, unless we have a way of specifying
that repeated patterns are OK . . .
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Quantifiers in regexps

How often?

• + after a regexp means “1 or more times”
• * means “0 or more times”
• ? means “0 or 1 times” (optional, once)
• {n} means “exactly n times”
• {n,} means “n or more times”
• {n,m} means “between n and m times (inclusive)”

string.vec.4 = c("R2D2",
"r2d2",
"R2D2 was much less annoyting that C3PO")

grep("([A-Z][0-9])+", string.vec.4, value=TRUE)

## [1] "R2D2"
## [2] "R2D2 was much less annoyting that C3PO"

grep("([A-Z|a-z][0-9])+", string.vec.4, value=TRUE)

## [1] "R2D2"
## [2] "r2d2"
## [3] "R2D2 was much less annoyting that C3PO"

grep("([A-Z|a-z][0-9])+.*C3PO", string.vec.4, value=TRUE)

## [1] "R2D2 was much less annoyting that C3PO"

grep("([A-Za-z][0-9])+.*C3PO", string.vec.4, value=TRUE)

## [1] "R2D2 was much less annoyting that C3PO"

Note that we didn’t have to explicitly write | inside the square bracket to denote the OR

Quantifier scope and anchoring

• By default, quantifiers apply to last character; use parentheses to have it match more

grep("ha{2,}", "haha", value=TRUE)

## character(0)
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grep("(ha){2,}", "haha", value=TRUE)

## [1] "haha"

• $ means a pattern can only match at the end of a line or string

• ˆ means (outside of braces) the beginning of a line or string

grep("[a-z]$", "I like lasers", value=TRUE)

## [1] "I like lasers"

grep("[a-z]$", "I like LASERS", value=TRUE)

## character(0)

There is much more

There are many more special characters, rules for anchoring, etc., so if you are interested, go out and read
more about regular expressions
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But if not, what we’ve covered in this lecture should suffice for this course

Splitting on a regexp

strsplit() will take a regexp as its split argument; splits a string into new strings at each instance of the
regexp, just like it would if split were a regular string

Abe Lincoln text example from last time:

linc = readLines("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/lincoln.txt")
linc = paste(linc, collapse=" ")
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Splitting on pure spaces gives weird results:

linc.words1 = strsplit(linc, split=" ")[[1]]
head(sort(table(linc.words1)))

## linc.words1
## - "the "Woe absorbs accept achieve
## 1 1 1 1 1 1

Splitting on any number of spaces or punctuation marks is better:

linc.words2 = strsplit(linc, split="([[:space:]]|[[:punct:]])+")[[1]]
head(sort(table(linc.words2)))

## linc.words2
## absorbs accept achieve against agents aid
## 1 1 1 1 1 1

head(sort(table(linc.words2), decreasing=TRUE))

## linc.words2
## the to and of it war
## 55 26 24 22 12 12

Note that R requires double brackets for special character classes like [[:punct:]] and [[:space]] (these
are called POSIXs)

Example: extracting earthquake locations

Catalog of earthquakes of magnitude 6+ between 2002 and 2012 is up at http://www.stat.cmu.edu/~ryantibs/
statcomp/lectures/anss.html

<HTML><HEAD><TITLE>NCEDC_Search_Results</TITLE></HEAD><BODY>Your search parameters are:<ul>
<li>catalog=ANSS
<li>start_time=2002/01/01,00:00:00
<li>end_time=2012/01/01,00:00:00
<li>minimum_magnitude=6.0
<li>maximum_magnitude=10
<li>event_type=E
</ul>
<PRE>
DateTime,Latitude,Longitude,Depth,Magnitude,MagType,NbStations,Gap,Distance,RMS,Source,EventID
2002/01/01 10:39:06.82,-55.2140,-129.0000,10.00,6.00,Mw,78,,,1.07,NEI,2002010140

Suppose we want to extract just the data

Notice: every line of data begins with a date, YYYY/MM/DD
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anss = readLines("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/anss.html",
warn=FALSE)

date.pattern = "^[0-9]{4}/[0-9]{2}/[0-9]{2}"
head(grep(pattern=date.pattern, x=anss))

## [1] 11 12 13 14 15 16

head(grep(pattern=date.pattern, x=anss, value=TRUE))

## [1] "2002/01/01 10:39:06.82,-55.2140,-129.0000,10.00,6.00,Mw,78,,,1.07,NEI,2002010140"
## [2] "2002/01/01 11:29:22.73,6.3030,125.6500,138.10,6.30,Mw,236,,,0.90,NEI,2002010140"
## [3] "2002/01/02 14:50:33.49,-17.9830,178.7440,665.80,6.20,Mw,215,,,1.08,NEI,2002010240"
## [4] "2002/01/02 17:22:48.76,-17.6000,167.8560,21.00,7.20,Mw,427,,,0.90,NEI,2002010240"
## [5] "2002/01/03 07:05:27.67,36.0880,70.6870,129.30,6.20,Mw,431,,,0.87,NEI,2002010340"
## [6] "2002/01/03 10:17:36.30,-17.6640,168.0040,10.00,6.60,Mw,386,,,1.14,NEI,2002010340"

Finding non-matches

Use the invert option:

grep(pattern=date.pattern, x=anss, value=TRUE, invert=TRUE)

## [1] "<HTML><HEAD><TITLE>NCEDC_Search_Results</TITLE></HEAD><BODY>Your search parameters are:<ul>"
## [2] "<li>catalog=ANSS"
## [3] "<li>start_time=2002/01/01,00:00:00"
## [4] "<li>end_time=2012/01/01,00:00:00"
## [5] "<li>minimum_magnitude=6.0"
## [6] "<li>maximum_magnitude=10"
## [7] "<li>event_type=E"
## [8] "</ul>"
## [9] "<PRE>"
## [10] "DateTime,Latitude,Longitude,Depth,Magnitude,MagType,NbStations,Gap,Distance,RMS,Source,EventID"
## [11] "</PRE>"
## [12] "</BODY></HTML>"

grepl()

When you just want a Boolean vector saying where the matches are:

grepl(pattern=date.pattern, x=anss)[1:20]

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [12] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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regexpr() and regmatches()

• regexpr() returns location of first match in the target string, plus attributes like length of matching
substring

• A location of -1 means no match; it does not return the text of the match
• regmatches() takes the output of regexpr(), and teturns the matching text

date.regexpr = regexpr(pattern=date.pattern, text=anss)
head(regmatches(m=date.regexpr, x=anss))

## [1] "2002/01/01" "2002/01/01" "2002/01/02" "2002/01/02" "2002/01/03"
## [6] "2002/01/03"

head(grep(pattern=date.pattern, x=anss, value=TRUE))

## [1] "2002/01/01 10:39:06.82,-55.2140,-129.0000,10.00,6.00,Mw,78,,,1.07,NEI,2002010140"
## [2] "2002/01/01 11:29:22.73,6.3030,125.6500,138.10,6.30,Mw,236,,,0.90,NEI,2002010140"
## [3] "2002/01/02 14:50:33.49,-17.9830,178.7440,665.80,6.20,Mw,215,,,1.08,NEI,2002010240"
## [4] "2002/01/02 17:22:48.76,-17.6000,167.8560,21.00,7.20,Mw,427,,,0.90,NEI,2002010240"
## [5] "2002/01/03 07:05:27.67,36.0880,70.6870,129.30,6.20,Mw,431,,,0.87,NEI,2002010340"
## [6] "2002/01/03 10:17:36.30,-17.6640,168.0040,10.00,6.60,Mw,386,,,1.14,NEI,2002010340"

Notice the difference?

More complex example: earthquake coordinates

one.geo.pattern = paste("-?[0-9]+\\.[0-9]{4}")
pair.geo.pattern = paste(rep(one.geo.pattern,2), collapse=",")
coords.matches = regexpr(pattern=pair.geo.pattern, text=anss)
coords = regmatches(m=coords.matches,x=anss)
head(coords)

## [1] "-55.2140,-129.0000" "6.3030,125.6500" "-17.9830,178.7440"
## [4] "-17.6000,167.8560" "36.0880,70.6870" "-17.6640,168.0040"

coords.pairs = strsplit(coords,",") # Break apart latitude and longitude
head(coords.pairs)

## [[1]]
## [1] "-55.2140" "-129.0000"
##
## [[2]]
## [1] "6.3030" "125.6500"
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##
## [[3]]
## [1] "-17.9830" "178.7440"
##
## [[4]]
## [1] "-17.6000" "167.8560"
##
## [[5]]
## [1] "36.0880" "70.6870"
##
## [[6]]
## [1] "-17.6640" "168.0040"

coords.vec = unlist(coords.pairs) # Unlist into a vector
head(coords.vec)

## [1] "-55.2140" "-129.0000" "6.3030" "125.6500" "-17.9830" "178.7440"

coords.mat = matrix(coords.vec, ncol=2, byrow=TRUE) # Reshape into a matrix
head(coords.mat)

## [,1] [,2]
## [1,] "-55.2140" "-129.0000"
## [2,] "6.3030" "125.6500"
## [3,] "-17.9830" "178.7440"
## [4,] "-17.6000" "167.8560"
## [5,] "36.0880" "70.6870"
## [6,] "-17.6640" "168.0040"

colnames(coords.mat) = c("Latitude","Longitude")

library(maps)
map("world")
points(x=coords.mat[,"Longitude"], y=coords.mat[,"Latitude"],

pch=19, col="red")
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Summary

• Regexps are text patterns built up from strings by alternation and repetition
• Mastering the syntax of regexps lets us scan text for complicated patterns
• Many string-based functions work with regexps as well
• Special functions exist to scan vectors for matches
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