
Lecture 6: Writing and Using Functions
Statistical Computing, 36-350
Monday September 28, 2015

Outline

• Defining functions: tying related commands into bundles
• Interfaces: controlling what the function can see and do
• Example: parameter estimation code

Why functions?

Data structures tie related values into one object

Functions tie related commands into one object

In both cases: easier to understand, easier to work with, easier to build into larger things

Huber loss function

"Huber" loss function, for outlier-resistant regression
Inputs: vector of numbers (x)
Outputs: vector with x^2 for small entries, 2|x|-1 for large ones
psi.1 = function(x) {
psi = ifelse(x^2 > 1, 2*abs(x)-1, x^2)
return(psi)

}

Our functions get used just like the built-in ones:

z = c(-0.5,-5,0.9,9)
psi.1(z)

[1] 0.25 9.00 0.81 17.00

Go back to the declaration and look at the parts:

"Huber" loss function, for outlier-resistant regression
Inputs: vector of numbers (x)
Outputs: vector with x^2 for small entries, 2|x|-1 for large ones
psi.1 = function(x) {
psi = ifelse(x^2 > 1, 2*abs(x)-1, x^2)
return(psi)

}

1

Two interfaces: the inputs or arguments; the outputs or return value

Calls other functions ifelse(), abs(), operators ˆ and >. Could have also called other functions we’ve
written

return() says what the output is. With no explicit return statement, the function just outputs what’s on
the last line

Comments: not required by R, but a very good idea! One-line description of purpose; listing of arguments;
listing of outputs

What should be a function?

• Things you’re going to re-run, especially if it will be re-run with changes to arguments
• Chunks of code you keep highlighting and hitting return on
• Chunks of code which are small parts of bigger analyses
• Chunks of code that are very similar to other chunks

Multiple arguments

"Hubger" loss function, for outlier-resistant regression
Inputs: vector of numbers (x), scale for crossover (c)
Outputs: vector with x^2 for small entries, 2c|x|-c^2 for large ones
psi.2 = function(x, c=1) {
psi = ifelse(x^2 > c^2, 2*c*abs(x)-c^2, x^2)
return(psi)

}

psi.1(z)

[1] 0.25 9.00 0.81 17.00

psi.2(z,1) # Same

[1] 0.25 9.00 0.81 17.00

Default values get used if arguments are missing:

psi.2(z) # Same

[1] 0.25 9.00 0.81 17.00

Named arguments can go in any order when explicitly labeled:

2

psi.2(z,1)

[1] 0.25 9.00 0.81 17.00

psi.2(z,c=1) # Same

[1] 0.25 9.00 0.81 17.00

psi.2(x=z,c=1) # Same

[1] 0.25 9.00 0.81 17.00

psi.2(c=1,x=z) # Same

[1] 0.25 9.00 0.81 17.00

psi.2(1,z) # Different!

[1] -1.25 1.00 0.99 1.00

Checking arguments

Odd behavior can occur when arguments are passed that we don’t expect

psi.2(x=z,c=c(1,1,1,10))

[1] 0.25 9.00 0.81 81.00

psi.2(x=z,c=-1)

[1] 0.25 -11.00 0.81 -19.00

So we can put few sanity checks into the code

"Huber" loss function, for outlier-resistant regression
Inputs: vector of numbers (x), scale for crossover (c)
Outputs: vector with x^2 for small entries, 2c|x|-c^2 for large ones
psi.3 = function(x, c=1) {

Scale should be a single positive number
stopifnot(length(c)==1, c>0)
psi = ifelse(x^2 > c^2, 2*c*abs(x)-c^2, x^2)
return(psi)

}

Arguments to stopifnot() are a series of expressions which should all be TRUE; execution halts, with error
message, at first FALSE

3

What the function can see and do

• Each function has its own environment

• Names here over-ride names in the global environment

• Internal environment starts with the named arguments

• Assignments inside the function only change the internal environment
(There are ways around this, but they are difficult and probably best avoided)

• Names undefined in the function are looked for in the environment the function gets called from

Environment examples

x = 7
y = c("A","C","G","T","U")
adder = function(y) { x = x+y; return(x) }
adder(1)

[1] 8

x

[1] 7

y

[1] "A" "C" "G" "T" "U"

circle.area = function(r) { return(pi*r^2) }
circle.area(c(1,2,3))

[1] 3.141593 12.566371 28.274334

truepi = pi
pi = 3 # Valid in 1800s Indiana
circle.area(c(1,2,3))

[1] 3 12 27

pi = truepi # Restore sanity
circle.area(c(1,2,3))

[1] 3.141593 12.566371 28.274334

4

Respect the interfaces!

Interfaces mark out a controlled inner environment for our code

Interact with the rest of the system only at the interface

Advice: arguments explicitly give the function all the information
- Reduces risk of confusion and error
- Exception: true universals like π

Likewise, output should only be through the return value

More about breaking up tasks and about environments later

Example: fitting a statistical model

Fact: bigger cities tend to produce more economically per capita

A proposed statistical model (Geoffrey West and others):

Y = y0N
a + noise

where Y is the per-capita “gross metropolitan product” of a city, N is its population, and y0 and a are
parameters

Some empirical evidence

gmp = read.table("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/gmp.dat")
gmp$pop = gmp$gmp/gmp$pcgmp
plot(gmppop, gmppcgmp, log="x", xlab="Population",
ylab="Per-capita economic output ($/person-year)",
main="US metropolitan areas, 2006")

curve(6611*x^(1/8),add=TRUE,col="blue")

5

5e+04 2e+05 5e+05 2e+06 5e+06 2e+07

20
00

0
40

00
0

60
00

0
80

00
0

US metropolitan areas, 2006

Population

P
er

−
ca

pi
ta

 e
co

no
m

ic
 o

ut
pu

t (
$/

pe
rs

on
−

ye
ar

)

We want to fit the model
Y = y0N

a + noise

to some data. Take y0 = 6611 for today

Unfortunately there’s not an easy way to do this with a single mathematical formula. But we can do this
iteratively. Let’s approximate the derivative of error with respect to a, and move in the opposite direction

An actual first attempt at code:

maximum.iterations = 100
deriv.step = 1/1000
step.scale = 1e-12
stopping.deriv = 1/100
iteration = 0
deriv = Inf
a = 0.15
while ((iteration < maximum.iterations) &&

(deriv > stopping.deriv)) {
iteration = iteration + 1
mse.1 = mean((gmp$pcgmp - 6611*gmp$pop^a)^2)
mse.2 = mean((gmp$pcgmp - 6611*gmp$pop^(a+deriv.step))^2)
deriv = (mse.2 - mse.1)/deriv.step
a = a - step.scale*deriv

}
list(a=a,iterations=iteration,

converged=(iteration<maximum.iterations))

6

$a
[1] 0.1258166
##
$iterations
[1] 58
##
$converged
[1] TRUE

What’s wrong with this?

• Not encapsulated: re-run by cutting and pasting code—but how much of it? Also, hard to make part of
something larger

• Inflexible: to change initial guess at a, have to edit, cut, paste, and re-run
• Error-prone: to change the data set, have to edit, cut, paste, re-run, and hope that all the edits are

consistent
• Hard to fix: should stop when absolute value of derivative is small, but this stops when large and

negative. Imagine having five copies of this and needing to fix same bug on each.

Let’s turn this into a function and then improve it

Second attempt

Second attempt, with logic fix:

estimate.scaling.exponent.1 = function(a) {
maximum.iterations = 100
deriv.step = 1/1000
step.scale = 1e-12
stopping.deriv = 1/100
iteration = 0
deriv = Inf
while ((iteration < maximum.iterations) &&

(abs(deriv) > stopping.deriv)) {
iteration = iteration + 1
mse.1 = mean((gmp$pcgmp - 6611*gmp$pop^a)^2)
mse.2 = mean((gmp$pcgmp - 6611*gmp$pop^(a+deriv.step))^2)
deriv = (mse.2 - mse.1)/deriv.step
a = a - step.scale*deriv

}
fit = list(a=a,y0=y0,iterations=iteration,

converged=(iteration<maximum.iterations))
return(fit)

}

Third attempt

All those magic numbers are bad! Let’s make them defaults

7

estimate.scaling.exponent.2 = function(a, y0=6611,
maximum.iterations=100, deriv.step=0.001,
step.scale=1e-12, stopping.deriv=0.01) {

iteration = 0
deriv = Inf
while ((iteration < maximum.iterations) &&

(abs(deriv) > stopping.deriv)) {
iteration = iteration + 1
mse.1 = mean((gmp$pcgmp - y0*gmp$pop^a)^2)
mse.2 = mean((gmp$pcgmp - y0*gmp$pop^(a+deriv.step))^2)
deriv = (mse.2 - mse.1)/deriv.step
a = a - step.scale*deriv

}
fit = list(a=a,y0=y0,iterations=iteration,

converged=(iteration<maximum.iterations))
return(fit)

}

Fourth attempt

Why type out the same calculation of the MSE twice? Let’s create a function for this purpose

mse = function(a, y0, Y, N) { mean((Y-y0*N^a)^2) }

estimate.scaling.exponent.3 = function(a, y0=6611,
maximum.iterations=100, deriv.step=0.001,
step.scale=1e-12, stopping.deriv=0.01) {

iteration = 0
deriv = Inf

while ((iteration < maximum.iterations) &&
(abs(deriv) > stopping.deriv)) {

iteration = iteration + 1
deriv = (mse(a+deriv.step,y0,gmp$pcgmp,gmp$pop) -

mse(a,y0,gmp$pcgmp,gmp$pop)) / deriv.step
a = a - step.scale*deriv

}
fit = list(a=a,y0=y0,iterations=iteration,
converged=(iteration<maximum.iterations))

return(fit)
}

Fifth attempt

We’re locked in to using specific columns of gmp; we shouldn’t have to re-write code just to compare two data
sets. Let’s make more arguments, with defaults

8

estimate.scaling.exponent.4 = function(a, y0=6611,
Y=gmp$pcgmp, N=gmp$pop,
maximum.iterations=100, deriv.step=0.001,
step.scale=1e-12, stopping.deriv=0.01) {

iteration = 0
deriv = Inf

while ((iteration < maximum.iterations) &&
(abs(deriv) > stopping.deriv)) {

iteration = iteration + 1
deriv = (mse(a+deriv.step,y0,Y,N) -

mse(a,y0,Y,N)) / deriv.step
a = a - step.scale*deriv

}
fit = list(a=a,y0=y0,iterations=iteration,
converged=(iteration<maximum.iterations))

return(fit)
}

What have we done?

The final code is shorter, clearer, more flexible, and more re-usable

Exercises: - Run the code with the default values to get an estimate of a; plot the curve along with the
data points - Randomly remove one data point—how much does the estimate change? - Run the code from
multiple starting points—how different are the estimates of a?

Aren’t you just a bit curious?

plm = estimate.scaling.exponent.4(0.1)
plm

$a
[1] 0.1258166
##
$y0
[1] 6611
##
$iterations
[1] 62
##
$converged
[1] TRUE

plot(gmppop, gmppcgmp, log="x", xlab="Population",
ylab="Per-capita economic output ($/person-year)",
main="US metropolitan areas, 2006")

curve(6611*x^plm$a,add=TRUE,col="blue")

9

5e+04 2e+05 5e+05 2e+06 5e+06 2e+07

20
00

0
40

00
0

60
00

0
80

00
0

US metropolitan areas, 2006

Population

P
er

−
ca

pi
ta

 e
co

no
m

ic
 o

ut
pu

t (
$/

pe
rs

on
−

ye
ar

)

We already wrote code plot this above . . . we’ve just copied and pasted it. What to do, if we were writing a
report and needed to make many such plots (on say, different data sets)?

Yes, that’s right. Write a function to make these kind of plots!

Plotting a fitted model

plot.plm = function(plm, curve.col="blue", log="x",
Y=gmp$pcgmp, N=gmp$pop, ...) {

Extract the parameters
a = plm$a
y0 = plm$y0
Plot the data
plot(N,Y,log=log,...)
Draw the curve
f = function(x) { return(y0*x^a) }
curve(f(x),add=TRUE,col=curve.col)
invisible(TRUE)

}

The ... is a catch-all for any arguments the user wants to pass to the plot() function (e.g., xlab and ‘ylab)

The function silently returns a TRUE (hence the invisible(), instead of a return())

10

plot.plm(plm)

5e+04 2e+05 5e+05 2e+06 5e+06 2e+07

20
00

0
40

00
0

60
00

0
80

00
0

N

Y

plot.plm(plm,curve.col="red",
ylab="Per-capita economic output ($/person-year)",
main="US metropolitan areas, 2006",
pch=19,col="gray")

5e+04 2e+05 5e+05 2e+06 5e+06 2e+07

20
00

0
40

00
0

60
00

0
80

00
0

US metropolitan areas, 2006

N

P
er

−
ca

pi
ta

 e
co

no
m

ic
 o

ut
pu

t (
$/

pe
rs

on
−

ye
ar

)

11

Summary

• Functions bundle related commands together into objects: easier to re-run, easier to re-use, easier to
combine, easier to modify, less risk of error, easier to think about

• Interfaces control what the function can see (arguments, environment) and change (its internals, its
return value)

• Calling functions we define works just like calling built-in functions: named arguments, defaults

12

	Outline
	Why functions?
	Huber loss function
	What should be a function?
	Multiple arguments
	Checking arguments
	What the function can see and do
	Environment examples
	Respect the interfaces!
	Example: fitting a statistical model
	Some empirical evidence
	What's wrong with this?
	Second attempt
	Third attempt
	Fourth attempt
	Fifth attempt
	What have we done?
	Aren't you just a bit curious?
	Plotting a fitted model
	Summary

