
Supplementary material

This supplementary material is organised as follows. In Section S1 we include further details
of our algorithm and the proofs of results in Sections 2 & 3. The proofs of Theorems 5 and 6
along with a number of lemmas they require can be found in Section S2. Section S3 contains
information regarding simulation settings and additional results for the experiments in Section 6
of the main paper.

S1 Additional algorithmic details

S1.1 Remarks on constrained and unconstrained formulations of the univari-
ate objective

It is clear why the identifiability constraint (8) is important when we consider the multivariate
problem in Section 3.2. However, for the univariate problem, both constrained and uncon-
strained formulations of the objective can be clearly defined:

✓̂
c 2 argmin

✓2⇥

1

2

KX

k=1

wk

�
Ȳk � µ̂� ✓k

�2
+

K�1X

k=1

⇢(✓(k+1) � ✓(k)), (30)

✓̂
u 2 argmin

✓2RK

1

2

KX

k=1

wk

�
Ȳk � ✓k

�2
+

K�1X

k=1

⇢(✓(k+1) � ✓(k)). (31)

As discussed in Section 3.1.1, we can enlarge the feasible set in (30) to be all of RK : simi-
larly to the observation that

P
k wk✓̂uk = µ̂ =

P
k wkȲk, the minimiser of (30) over all of RK

will always be in ⇥. This can be shown by following the argument at the beginning of the
proof of Lemma 10. Therefore the algorithm defined in Section 3.1 can also be applied to the
unconstrained formulation of the objective.

It is clear that these problems are essentially identical, as ✓̂
u

is a minimiser of the uncon-
strained objective if and only if ✓̂

u � µ̂1 is a minimiser of the constrained objective. Observe
that while ✓̂

u 2 RK , the solution to the constrained objective is in fact (µ̂, ✓̂
c

) 2 R⇥⇥, which
is the same K-dimensional space only with a di↵erent parametersation. In particular, ✓̂

c

is
non-unique if and only if ✓̂

u

is non-unique.
Since one can obtain the solution to the constrained objective by solving the unconstrained

one and then reparameterising (and vice versa), we are free to assume without loss of generality
that wT Ȳ = 0, so µ̂ = 0, when solving the univariate problem, and will remark where we do
this.

S1.2 Proofs of results in Sections 2 & 3

Proof of Proposition 1. Assume, without loss of generality, that µ̂ = 0. Suppose that there
exists l 6= k such that ✓̂k = ✓̂l. Without loss of generality we have that Ȳk 6= ✓̂k (if Ȳk = ✓̂k then
Ȳl 6= ✓̂l and it can be seen that ✓̂(1) < Ȳl < ✓̂K , in which case swap labels).

Now we construct ✓̃ by setting ✓̃r = ✓̂r ^ Ȳk for r = 1, . . . , k, and ✓̃r = ✓̂r otherwise. We have
`(µ̂, ✓̃) < `(µ̂, ✓̂) and, by convexity of ⇢, it follows that

K�1X

r=1

⇢(✓̃(r+1) � ✓̃(r)) 
K�1X

r=1

⇢(✓̂(r+1) � ✓̂(r)).

This gives the conclusion Q(✓̃) < Q(✓̂), contradicting the optimality of ✓̂.

1

Proof of Proposition 2. Suppose, for a contradiction, that ✓̂k < ✓̂l. Then at least one of the
following must be true:

���µ̂+ ✓̂k � Ȳk
��� >

���µ̂+ ✓̂l � Ȳk
��� (32)

���µ̂+ ✓̂l � Ȳl
��� >

���µ̂+ ✓̂k � Ȳl
��� . (33)

Let ✓̃ be defined as follows. Set ✓̃r = ✓̂r for all r 6= k, l. If (32) holds set ✓̃k = ✓̂l and if (33)
holds set ✓̃l = ✓̂k. Observe that

nX

r=1

⇢(✓̂(r+1) � ✓̂(r)) �
nX

r=1

⇢(✓̃(r+1) � ✓̃(r))

and that the squared loss of ✓̃ is strictly smaller than the squared loss of ✓̂, thus contradicting
optimality of ✓̂.

Proof of Proposition 3. In this proof we consider the unconstrained formulation of the objective
(31) discussed in Section S1.1. Suppose that (Ȳk)Kk=1

is such that there are two distinct solutions

to (12), ✓̂
(1) 6= ✓̂

(2)

. Let us assume that the levels are indexed such that Ȳ1  · · ·  ȲK . Define

k⇤ = max{k : ✓̂(1)k 6= ✓̂(2)k } to be the largest index at which the two solutions take di↵erent values

and note that we must have ✓̂(r)
1

 · · ·  ✓̂(r)K .
First consider the case where k⇤ < K. Then

Sr := {k : ✓̂(r)k = ✓̂(r)k⇤+1
} ✓ {k⇤ + 1, k⇤ + 2, . . . ,K},

for r = 1, 2. We now argue that we must have ✓̂(1)k⇤+1
= ✓̂(2)k⇤+1

=: t⇤ � (✓̂(1)k⇤ _ ✓̂(2)k⇤) + ��. Indeed,

suppose not, and suppose that without loss of generality ✓̂(2)k⇤ > ✓̂(1)k⇤ . Fix r 2 {1, 2}. The
directional derivative of the objective in the direction of the binary vector with ones at the

indices given by Sr and zeroes elsewhere evaluated at ✓̂
(r)

must be 0. But comparing these for

r = 1, 2, we see they are identical except for the term ⇢0(✓k⇤+1 � ✓̂(r)k⇤), which will be strictly

larger for r = 2, giving a contradiction. This then implies that both ✓̂(1)k⇤ and ✓̂(2)k⇤ must minimise
fk⇤ over ✓  t⇤ � �� since the full objective value is

Q(✓̂
(r)

) = fk⇤(✓̂
(r)
k⇤) +

1

2
��2 + (terms featuring only index k⇤ + 1 or higher)

for r = 1, 2. We also have that when k⇤ = K, both ✓̂(1)k⇤ and ✓̂(2)k⇤ must minimise fk⇤ .
Using the functions gk�1 as defined in (15), we have the simple relationship that gk�1(✓k) =

fk(✓k)� 1

2
wk(Ȳk � ✓k)2. In particular, properties (i) and (iii) of Lemma 4 hold with fk replaced

by gk�1. These can be characterised as gk�1(✓k) = q̌k,r(✓k) for ✓k 2 Ik,r, where Ik,r are the
intervals associated with fk and q̌k,r(✓k) := qk,r(✓k)� 1

2
wk(Ȳk � ✓k)2. Note that for each r, q̌k,r

depends on the values of Ȳ1, . . . , Ȳk�1 but not that of Ȳk (observe that qk,r(✓k) includes a term
1

2
wk(Ȳk � ✓k)2; see (13)).

Now as ✓̂(1)k⇤  ✓̂(1)k⇤+1
� �� and ✓̂(2)k⇤  ✓̂(2)k⇤+1

� �� (if k⇤ < K), by Lemma 4 (iii) both must be

local minima of fk⇤ , and we have that there must exist distinct r1 6= r2 such that ✓̂(1)k⇤ 2 Ik⇤,r1
and ✓̂(2)k⇤ 2 Ik⇤,r2 . Let

q̌k⇤,r1(x) = a1x
2 + b1x+ c1,

q̌k⇤,r2(x) = a2x
2 + b2x+ c2.

2

Since ✓̂(1)k⇤ must be the minimum of q̌k⇤,r1(✓k⇤) +
1

2
wk⇤(Ȳk⇤ � ✓k⇤)2 (and similarly for ✓̂(2)k⇤), we

must have that

min
x

⇢
a1x

2 + b1x+ c1 +
1

2
wk⇤(Ȳk⇤ � x)2

�
= min

x

⇢
a2x

2 + b2x+ c2 +
1

2
wk⇤(Ȳk⇤ � x)2

�

=) c1 �
(b1 � wk⇤ Ȳk⇤)2

4a1 + 2wk⇤
= c2 �

(b2 � wk⇤ Ȳk⇤)2

4a2 + 2wk⇤
. (34)

This is a quadratic equation in Ȳk⇤ , so there are at most two values for which (34) holds.

Considering all pairs r1, r2, we see that in order for there to exist two solutions ✓̂
(1) 6= ✓̂

(2)

, Ȳk⇤
must take values in a set of size at most c(K), for some function c : N ! N.

Now let

S := {(Ȳk)Kk=1 : the minimiser of the objective is not unique} ✓ RK .

What we have shown, is that associated with each element (Ȳk)Kk=1
2 S, there is at least one k⇤

such that
|{(Ȳ 0

k)
K
k=1 2 S : Ȳ 0

k = Ȳk for all k 6= k⇤}|

is bounded above by c(K). Now for each j = 1, . . . ,K, let Sj be the set of (Ȳk)Kk=1
2 S for which

the there exists a k⇤ with the property above and k⇤ = j. Note that [jSj = S. Now Sj ⇢ RK

has Lebesgue measure zero as a finite union of graphs of measurable functions f : RK�1 ! R.
Thus S has Lebesgue measure zero.

Proof of Lemma 4. Assume, without loss of generality, that µ̂ = 0. We proceed inductively,
assuming that the properties (i) and (iii) hold for fk, and (ii) holds for bk+1. Additionally we
include in our inductive hypothesis that for all x, f 0

k(x�) � f 0
k(x+), where we define f

0
k(x�) and

f 0
k(x+) to be the left-derivative and right-derivative of fk at x, respectively. We note that these
trivially hold for the base case f1, and the case b2 can be checked by direct calculation.

We first prove (i), that fk+1 is continuous, coercive, and piecewise quadratic and with finitely
many pieces. We then show that f 0

k+1
(x�) � f 0

k+1
(x+) for all x, which allows us to show that

(iii) holds for fk+1. Finally, we use these results to show that (ii) holds for bk+2.
We now show that fk+1 is coercive and continuous. Clearly gk(x) � minyx fk(y), so it

follows that gk(x) ! 1 as x ! �1 as fk is coercive. Furthermore gk is bounded from below
as fk is coercive and continuous. Thus since fk+1(x) = gk(x) +

1

2
wk+1(Ȳk+1 � x)2, it follows

that fk+1 is coercive. Next as gk(x) = minyx fk(y) + ⇢(y� x), and fk and ⇢ are continuous, it
follows that gk is continuous and therefore that fk+1 is continuous.

To see why fk+1 is piecewise quadratic with finitely many pieces, we observe that it can be
written fk+1(x) = fk(bk+1(x)) + ⇢(x� bk+1(x)) +

1

2
wk+1(Ȳk+1 � x)2. We have by our inductive

hypothesis that fk is piecewise quadratic and bk+1(x) is piecewise linear, both with finitely
many pieces. Since the composition of a piecewise linear function inside a piecewise quadratic
function is piecewise quadratic, the remainder of (i) is shown.

We now turn our attention to (iii), and define for x 2 R:

y⇤(x) = sargmin
yx

fk(y) + ⇢(x� y),

y⇤(x) = sargmin
yx

fk+1(y) + ⇢(x� y).

We will first show that f 0
k+1

(x+)  f 0
k+1

(x�) for all x 2 R. Suppose that we are increasing x
and we have reached a point where gk(x) is not di↵erentiable (that is, the left-derivative and

3

the right-derivative do not match). By assumption (ii) for bk+1, we can assume that there is
some window � > 0 such that y⇤(t) is linear for t 2 (x� �, x), say y⇤(t) = ↵+ �t.

In order to proceed with the following argument, we must show that for su�ciently small
✏ > 0, we have ↵ + �(x + ✏)  x + ✏. If ↵ + �x < x, this is immediate. Therefore it remains
to consider the case ↵ + �x = x, for which we show that we must have ↵ = 0 and � = 1, i.e
y⇤(t) = t for t 2 (x� �, x). This follows from the observation that if y⇤(t) < t, then for all t1 > t
we have y⇤(t1) /2 (y⇤(t), t]. Indeed, suppose not, then

fk(y⇤(t1)) + ⇢(t1 � y⇤(t1)) < fk(y⇤(t)) + ⇢(t1 � y⇤(t))

=) fk(y⇤(t1)) + ⇢(t� y⇤(t1)) < fk(y⇤(t)) + ⇢(t1 � y⇤(t)) + ⇢(t� y⇤(t1))� ⇢(t1 � y⇤(t1))

 fk(y⇤(t)) + ⇢(t� y⇤(t)),

contradicting the definition of y⇤(t). The last line uses ⇢(t1 � y⇤(t)) � ⇢(t1 � y⇤(t1))  ⇢(t �
y⇤(t))� ⇢(t� y⇤(t1)), which follows from concavity of ⇢ and y⇤(t) < y⇤(t1)  t < t1.

With this established, we have that:

gk(x� ✏) = fk(↵+ �(x� ✏)) + ⇢(x� ✏� (↵+ �(x� ✏)))

gk(x+ ✏) = fk(y⇤(x+ ✏)) + ⇢(x+ ✏� y⇤(x+ ✏))

 fk(↵+ �(x+ ✏)) + ⇢(x+ ✏� (↵+ �(x+ ✏))).

Note that fk has both left-derivatives and right-derivatives at every point in R. Suppose first
that � � 0, and we observe that

g0k(x�) = �f 0
k(y⇤(x)�) + (1� �)⇢0(x� y⇤(x))

Then by the basic definition of the right-derivative,

g0k(x+) = lim
✏!0+

fk(y⇤(x+ ✏)) + ⇢(x+ ✏� y⇤(x+ ✏))� fk(y⇤(x))� ⇢(x� y⇤(x))

✏

 lim
✏!0+

1

✏


fk(↵+ �(x+ ✏)) + ⇢(x+ ✏� (↵+ �(x+ ✏)))

� fk(↵+ �x)� ⇢(x� (↵+ �x))

�

= �f 0
k(y⇤(x)+) + (1� �)⇢0(x� y⇤(x))

= g0k(x�) + �(f 0
k(y⇤(x)+)� f 0

k(y⇤(x)�))

 g0k(x�),

where the last inequality follows from our inductive hypothesis that f 0
k(y+)  f 0

k(y�) for all
y 2 R. An analogous argument shows that the same conclusion holds when � < 0.

Now we use this to prove the claim. Because there are no points of fk+1 at which the
left-derivative is less than the right-derivative, without loss of generality we claim that fk+1

is di↵erentiable at y⇤(x) for all x, unless y⇤(x) = x. Indeed, suppose not, then we have that
f 0
k+1

(y⇤(x)�) > f 0
k+1

(y⇤(x)+) and necessarily that defining h(y) := fk+1(y) + ⇢(x� y), we have
0 2 @h(y⇤(x)). But since h(y⇤(x)+) < h(y⇤(x)�), we contradict the optimality of y⇤(x) as this
point is in fact a local maximum.

We finally consider claim (ii). By (iii), we have that for every point x, y⇤(x) is either x or
at the minimum of one of the quadratic pieces of fk+1(·)+⇢(x� ·). In either case, we have that
y⇤(x) is linear in x and thus fk+1(y⇤(x))+⇢(x�y⇤(x)) is quadratic in x. We can define gk+1(x)
pointwise as the minimum of this finite set of quadratic functions of x, whose expressions are

4

given in Appendix A.1. Importantly, the coe�cients in the linear expression y⇤(x) of x depend
only on which of these functions is the minimum at x. As the number of intersections between
elements in this set of quadratic functions is bounded above by twice the square of the size of
the set, we can conclude that bk+2(x) is piecewise linear and with a finite number of pieces,
thus concluding the proof.

S1.3 Computation time experiments

A small experiment was performed to demonstrate the runtimes one can expect in practice for
the univariate problem. Note that this clustering is applied iteratively in the block coordinate
descent procedure we propose to use in multivariate settings. We considered 3 settings: one with
no signal, one with 2 true clusters and one with 5 true clusters. Independent and identically
distributed Gaussian noise was added to each of the subaverages. As in Section 6.3 the number
of categories was increased by random splitting of the levels. Each of these tests were repeated
25 times, on a computer with a 3.2GHz processor. The results are shown in Figure 8.

0 200 400 600 800

0
1

2
3

4
5

6

Setting 1

Number of categories

C
om

pu
ta

tio
n

tim
e

(s
)

(γ, λ) = (1, 0.1)
(γ, λ) = (1, 0.3)
(γ, λ) = (8, 0.1)
(γ, λ) = (8, 0.3)
(γ, λ) = (64, 0.1)
(γ, λ) = (64, 0.3)

0 200 400 600 800

0
1

2
3

4
5

6

Setting 2

Number of categories

C
om

pu
ta

tio
n

tim
e

(s
)

(γ, λ) = (1, 0.1)
(γ, λ) = (1, 0.3)
(γ, λ) = (8, 0.1)
(γ, λ) = (8, 0.3)
(γ, λ) = (64, 0.1)
(γ, λ) = (64, 0.3)

0 200 400 600 800

0
1

2
3

4
5

6

Setting 3

Number of categories

C
om

pu
ta

tio
n

tim
e

(s
)

(γ, λ) = (1, 0.1)
(γ, λ) = (1, 0.3)
(γ, λ) = (8, 0.1)
(γ, λ) = (8, 0.3)
(γ, λ) = (64, 0.1)
(γ, λ) = (64, 0.3)

Figure 8: Computation times for solving the univariate problem.

S1.4 Discretised algorithm

For very large-scale problems, speed can be improved if we only allow coe�cients to take values
in some fixed finite grid, rather than any real value. Below we describe how such an algorithm
would approximately solve the univariate objective (12). We will use the unconstrained objective
as discussed in Section S1.1. We would first fix L grid points #1 < · · · < #L, and then proceed
as described in Algorithm 3.

This algorithm has the same basic structure to the approach we use in Section 3.1 for
computing the exact global optimum. The di↵erence is that now, instead of as in (14), we
define fk in the following way:

fk(✓k) := min
(✓1,...,✓k�1)

T2{#1,...,#L}k�1

✓1···✓k�1✓k

⇢
1

2

kX

l=1

wl(Ȳl � ✓l)
2 +

k�1X

l=1

⇢(✓l+1 � ✓l)

�
.

The objects F and B play analogous roles to fk and bk in Section 3.1. Since we restrict
✓k 2 {#1, . . . ,#L}, we only need to store the values that fk takes at these L values; this is the
purpose of the vector F in Algorithm 3. Similarly, the rows B(k, ·) serve the same purpose as
the functions bk where, again, we only need to store L values corresponding to the di↵erent
options for ✓k.

5

Algorithm 3 Discrete algorithm for computing approximate solution to (12)

1: for l = 1, . . . , L do
2: Set Fnew(l) =

1

2
w1(Ȳ1 � #l)2

3: Set B(1, l) = l
4: end for
5: for k = 2, . . . ,K do
6: Set Fold = Fnew

7: for l = 1, . . . , L do
8: Set B(k, l) = argminl02{1,...,l} Fold(l0) + ⇢(#l � #l0) +

1

2
wk(Ȳk � #l)2

9: Set Fnew(l) = Fold(B(k, l)) + ⇢(#l � #B(k,l)) +
1

2
wk(Ȳk � #l)2

10: end for
11: end for
12: Set B⇤(K) = argminFnew, and ✓̂K = #B⇤(K)

13: for k = K � 1, . . . , 1 do
14: Set B⇤(k) = B(k + 1, B⇤(k + 1)), and ✓̂k = #B⇤(k)

15: end for

This algorithm returns the optimal solution ✓̂ to the objective where each of the coe�cients
are restricted to take values only in {#1, . . . ,#L}. We must ensure that the grid of values has fine
enough resolution that interesting answers can be obtained, which requires L being su�ciently
large. The number of clusters obtained by this approximate algorithm is bounded above by L,
so this must not be chosen too small.

One can see that the computational complexity of this algorithm is linear in K, with a total
of O(KL2) operations required. This is of course in addition to the O(n) operations needed to
compute w1, . . . , wK and Ȳ1, . . . , ȲK beforehand. In particular, choosing L .

p
K guarantees

that the complexity of this algorithm is at worst quadratic in K.

S2 Proofs of results in Section 4

S2.1 Proof of Theorem 5

The proof of Theorem 5 requires a number of auxiliary lemmas, which can be found in Sec-
tion S2.1.1.

Let us define Ri = Yi � µ̂ for i = 1, . . . , n, and R̄k = 1

nk

Pn
i=1 {Xi=k}Ri for k = 1, . . . ,K. Note

that

Ri =
KX

k=1

{Xi=k}✓
0

k + (P")i

where P = I � 11T /n.
For each k = 1, . . . ,K, we define the event

⇤k =

(�����
1

nk

nX

i=1

{Xi=k}(P")i

����� <
1

2

p
⌘�⇤s�

)
.

By a union bound, we have that P(\K
k=1

⇤k) � 1�
PK

k=1
P(⇤c

k). Now observe we can write

1

nk

nX

i=1

{Xi=k}(P")i = v(k)
T
P",

6

where we define v(k) 2 Rn by v(k)i = 1

nk {Xi=k}. Since P is an orthogonal projection matrix, we

have that kPv(k)k2  kv(k)k2 = 1p
nk
. It follows that v(k)

T
P" is sub-Gaussian with parameter

�/
p
nk. Applying the standard sub-Gaussian tail bound, we obtain

P(⇤c
k) = P

 �����
1

nk

nX

i=1

{Xi=k}(P")i

����� �
1

2

p
⌘�⇤s�

!

 2 exp

✓
�nwk⌘�⇤s�2

8�2

◆
,

where recall that wk = nk/n. Therefore, we have that

P
�
\K
k=1⇤k

�
� 1� 2

KX

k=1

exp

✓
�nwk⌘�⇤s�2

8�2

◆
� 1� 2 exp

✓
�nwmin⌘�⇤s�2

8�2
+ log(K)

◆
. (35)

In the following we work on the intersection ⇤ := \K
k=1

⇤k. This entails that for each k, |R̄k �
✓0k| <

p
⌘�⇤s�/2. We now relabel indices such that R̄1  · · ·  R̄K , and so from Proposition 2

that ✓̂1  · · ·  ✓̂K . Since our assumption (24) implies �(✓0) � p
⌘�⇤s�, it follows that on

⇤ the observed ordering is consistent with the ordering of the true coe�cients, i.e. there exist
0 = k0 < k1 < · · · < ks = K such that

✓01 = · · · = ✓0k1 < ✓0k1+1 = · · · = ✓0k2 < · · · < ✓0ks�1+1 = · · · = ✓0ks . (36)

Indeed, observe that for j = 1, . . . , s � 1, we have by the triangle inequality and (24), the
stronger property that

R̄kj+1 � R̄kj > 3

1 +

p
2

⌘

!
p

��⇤��p
⌘�⇤s�

> ��+ 2(
p
2s/⌘

p
�� _ ��) + 2

p
⌘�⇤s�. (37)

Our optimisation objective is therefore

✓̂ 2 argmin
✓2⇥

1

2

KX

k=1

wk(R̄k � ✓k)
2 +

KX

k=1

⇢(✓k+1 � ✓k). (38)

Since R̄kj � R̄kj�1+1 <
p
⌘�⇤s� for j = 1, . . . , s, it follows from Lemma 8 that ✓̂kj+1 � ✓̂kj � ��

for j = 1, . . . , s� 1, so

Q(✓̂) =
1

2

KX

k=1

wk(R̄k � ✓̂k)
2 +

K�1X

k=1

⇢(✓̂k+1 � ✓̂k)

=
1

2

KX

k=1

wk(R̄k � ✓̂k)
2 +

sX

j=1

kj�1X

k=kj�1+1

⇢(✓̂k+1 � ✓̂k) +
s� 1

2
��2 (39)

= min
✓2RK

0

@1

2

KX

k=1

wk(R̄k � ✓k)
2 +

sX

j=1

kj�1X

k=kj�1+1

⇢(✓k+1 � ✓k)

1

A+
s� 1

2
��2. (40)

Observe that we can have kj�1+1 > kj �1 for some j, in which case we take the sum over that
range to be zero. Note that (40) can be optimised over (✓kj�1+1, . . . , ✓kj) separately for each

7

j = 1, . . . , s. If s = 1, i.e. the true signal is zero, then the result follows from Lemma 10. Now
we see what happens when s > 1.

Without loss of generality, consider j = 1 and note that if k1 = 1 it is immediate that
✓̂1 = ✓̂0

1
. Hence, we can assume that k1 > 1. We note that ✓̂0

1
=
Pk1

k=1
wkR̄k/w0

1
, where we

define w0

k = n0

k/n. We see that our goal is to compute

argmin
✓2Rk1

1

2

k1X

k=1

wk(R̄k � ✓k)
2 +

k1�1X

k=1

⇢(✓k+1 � ✓k)

= ✓̂011+ argmin
✓2Rk1

1

2

k1X

k=1

wk(R̃k � ✓k)
2 �

k1�1X

k=1

⇢(✓k+1 � ✓k), (41)

where 1 2 Rk1 is a vector of ones and R̃k := R̄k � ✓̂0
1
for k = 1, . . . , k1. Note that we subtract

✓̂0
1
to ensure that

k1X

k=1

wkR̃k = 0,

as required for application of Lemma 10. We have by assumption that for k 2 1, . . . , k1,
|R̃k| 

p
⌘�⇤s�/2  (2 ^

p
w0
1
�)�/w0

1
. Thus, Lemma 10 can be applied with w̌ = w0

1
and it

follows that ✓̂k = ✓̂0
1
for k = 1, . . . , k1.

S2.1.1 Auxiliary lemmas

Here we prove a number of results required to obtain conditions for recovering the oracle least
squares estimate in the univariate case. Lemma 10 gives conditions for recovery of the true
solution, in the case where there is zero signal. Lemmas 8 and 9 ensure that the true levels are
far enough apart that they can be separated. Once we have this separation, we apply Lemma 10
on each of the levels to obtain the solution.

Lemma 7. Consider the optimisation problem

x⇤ = argmin
x�0



2
(2⌧ � x)2 + ⇢(x),

where ⌧ > 0 and  2 (0, 1]. Suppose further that ⌧ < (1^p
�)�/2. Then x⇤ = 0 is the unique

optimum.

Proof. We first observe that

x⇤ = argmin
x�0



2
(2⌧ � x)2 + ⇢�,�(x) = argmin

x�0

1

2
(2⌧ � x)2 + ⇢�,�/(x).

For convenience, we define F (x) := (2⌧ � x)2/2 + ⇢�,�/(x). It now su�ces to show that F
is uniquely minimised at 0 provided ⌧ < (1 ^ p

�)�/2. We can clearly see that x⇤ 2 [0, 2⌧].
Equation (2.3) of Breheny and Huang [2011] gives the result when � � 1.

When � < 1, we see that any stationary point of F in [0, �� ^ 2⌧] must be a maximum,
since on this interval F (x) is a quadratic function with a negative coe�cient of x2. Therefore its
minimum over [0, ��] is attained at either x = 0 or x = �� ^ 2⌧ . If 2⌧  ��, then it su�ces to
check that F (0) < F (2⌧). This holds if and only if ⌧ < ��/(�+1), but since we are assuming
⌧  ��/2 and � < 1, this is always satisfied.

If �� < 2⌧ , then we can see that the minimum of F over [��, 2⌧] will be attained at exactly
2⌧ . Thus, here it also su�ces to check F (0) < F (2⌧), which holds if and only if ⌧ <

p
�/�/2.

The final bound ⌧ < (1 ^p
�)�/2 follows from combining the results for these cases.

8

The following is a deterministic result to establish separation between groups of coe�cients.

Lemma 8. Consider the setup of Theorem 5, and assume that µ̂ = 0. Suppose that Ȳ1  · · · 
ȲK , and that for j = 1, . . . , s we have

Ȳkj � Ȳkj�1+1 <
p
⌘�⇤s�, (42)

where kj and kj�1 are as defined in (36). Suppose further that for j = 1, . . . , s� 1,

Ȳkj+1 � Ȳkj � ��+ 2(
p
2s/⌘

p
�� _ ��) + 2

p
⌘�⇤s�. (43)

Then for j = 1, . . . , s, we have Ȳkj�1+1  ✓̂kj�1+1  ✓̂kj  Ȳkj .

Proof. For convenience, within this lemma we define ⇣ :=
p
⌘�⇤s�. Recall that the objective

function which ✓̂ optimises takes the form

Q(✓) =
1

2

KX

k=1

wk(Ȳk � ✓k)
2 +

K�1X

k=1

⇢(✓k+1 � ✓k).

We first claim that ✓̂k 2 [Ȳ1, ȲK] for k = 1, . . . ,K. To see this, suppose that this is not the case
and define ✓̌ by projecting ✓̂ onto [Ȳ1, ȲK]K (i.e. ✓̌k = ȲK ^ (Ȳ1 _ ✓̂k) for k = 1, . . . ,K). The
penalty contribution from ✓̌ is no larger than that of ✓̂, and the loss contribution is strictly
smaller, so we obtain the contradiction Q(✓̌) < Q(✓̂).

We now proceed to show that for j = 1, . . . , s� 1, we have ✓̂kj  Ȳkj and ✓̂kj+1 � Ȳkj+1. We
prove the first of these sets of inequalities, since the second follows similarly by considering the
problem with �✓̂, �Ȳ and reversing the indices. Suppose, for contradiction, that there exists
some j in {1, . . . , s� 1} with ✓̂kj > Ȳkj . Let this j be minimal, such that for all l < j we have

✓̂kl  Ȳkl .

Next define l1 to be the maximal element of {kj�1 + 1, . . . , kj � 1} such that ✓̂l1  Ȳkj .

Similarly, we define l2 2 {kj + 1, . . . , kj+1} to be minimal such that ✓̂l2 � Ȳkj+1. The existence
of l1 and l2 is guaranteed by Lemma 9.

We note that for l = l1+1, . . . , kj , ✓̂l = ✓̂kj and hence (Ȳl� ✓̂l)2 � (Ȳkj � ✓̂l)2 = (Ȳkj � ✓̂kj)
2.

This can be shown by contradiction, as in (55). For such l, we have from optimality of ✓̂ that
Ȳl � ✓̂l1 � ✓̂kj � Ȳl (otherwise one could improve the objective by setting ✓̂l1 = ✓̂l) which implies

that ✓̂l1 < Ȳl. From this it follows that (Ȳl � ✓̂l1)
2  (Ȳkj � ✓̂l1)

2, since ✓̂l1 < Ȳl  Ȳkj .

Similarly, if l2 > kj + 1, then for l = kj + 1, . . . , l2 � 1 we have ✓̂l = ✓̂kj+1 and hence

(Ȳl � ✓̂l)2 � (Ȳkj+1 � ✓̂l)2 = (Ȳkj+1 � ✓̂kj+1)2. For such l, it follows that ✓̂l2 > Ȳl and therefore

that (Ȳl � ✓̂l2)
2  (Ȳkj+1 � ✓̂l2)

2.
Now, we define

w̃kj :=
X

lkj : ✓̂l=✓̂kj

wl

and, if l2 > kj + 1, w̃kj+1 :=
X

l�kj+1: ✓̂l=✓̂kj+1

wl.

We also define ✓̃ 2 RK according to

✓̃l =

(
✓̂l ^ ✓̂l1 for l  kj

✓̂l _ ✓̂l2 for l > kj .

9

We note that by assumption, both w̃kj < 1/⌘s and w̃kj+1 < 1/⌘s. We now consider two

cases: (A) where l2 = kj + 1, so ✓̂kj+1 � Ȳkj+1, and (B) where l2 > kj + 1, so ✓̂kj+1 < Ȳkj+1.

We first consider case (A), where the penalty terms between l1 and l2 in Q(✓̂) are

l2�1X

l=l1

⇢(✓̂l+1 � ✓̂l) = ⇢(✓̂l2 � ✓̂kj) + ⇢(✓̂kj � ✓̂l1).

Thus,

Q(✓̂)�Q(✓̃) =
X

lkj : ✓̂l=✓̂kj

wl

2
(Ȳl � ✓̂l)

2 �
X

lkj : ✓̂l=✓̂kj

wl

2
(Ȳl � ✓̂l1)

2

+ ⇢(✓̂l2 � ✓̂kj) + ⇢(✓̂kj � ✓̂l1)�
1

2
��2

�
w̃kj

2
(Ȳkj � ✓̂kj)

2 �
w̃kj

2
(Ȳkj � ✓̂l1)

2

+ ⇢(✓̂l2 � ✓̂kj) + ⇢(✓̂kj � ✓̂l1)�
1

2
��2 (44)

� inf
Ȳkj

<a✓̂l2

w̃kj

2
(Ȳkj � a)2 �

w̃kj

2
(Ȳkj � ✓̂l1)

2

+ ⇢(✓̂l2 � a) + ⇢(a� ✓̂l1)�
1

2
��2. (45)

We specify the infimum in (47) because (Ȳkj , ✓̂l2] is not closed, and let (am) be a convergent

sequence in (Ȳkj , ✓̂l2] whose limit attains this infimum. We define a⇤ = limm!1 am.

By assumption (43), at least one of (a⇤ � ✓̂l1) and (✓̂l2 � a⇤) is greater than or equal to ��.
Here, we use that the separation (43) � 2��. If ✓̂l2 � a⇤ � �� then we denote this case (A1)
and (45) becomes

Q(✓̂)�Q(✓̃) � inf
Ȳkj

<a✓̂l2���

w̃kj

2
(Ȳkj � a)2 �

w̃kj

2
(Ȳkj � ✓̂l1)

2 + ⇢(a� ✓̂l1) (46)

� min
✓̂l1ã✓̂l2���

w̃kj

2
(Ȳkj � ã)2 �

w̃kj

2
(Ȳkj � ✓̂l1)

2 + ⇢(ã� ✓̂l1). (47)

We define ã⇤ to be the minimiser over ã of (47). We can observe that since Ȳkj � ✓̂l1 < ⇣ and

⇣ < (1 ^
p
�w̃kj)�/w̃kj , we have Ȳkj � ✓̂l1 < (1 ^

p
�w̃kj)�/w̃kj . Thus, we have by Lemma 7

that the uniquely optimal ã⇤ = ✓̂l1 . This gives that the value of (47) is zero.
It is straightforward to see from (46) that a⇤ = Ȳkj must be the unique limit of (am). As we

have assumed that ✓̂kj > Ȳkj and the infimum is not attained in (Ȳkj , Ȳkj+1), the inequality in

line (46) can be made strict. It follows that Q(✓̂) > Q(✓̃).
Thus, it remains for us to consider the case where ✓̂l2�a⇤ < ��, which implies that a⇤� ✓̂l1 �

��. We denote this case (A2). Now, from (45) we can obtain

Q(✓̂)�Q(✓̃) � min
✓̂l2���<ã✓̂l2

w̃kj

2
(Ȳkj � ã)2 �

w̃kj

2
(Ȳkj � ✓̂l1)

2 + ⇢(✓̂l2 � ã). (48)

The objective is piecewise quadratic (and continuously di↵erentiable), with two pieces:
[✓̂l1 , ✓̂l2 � ��] and (✓̂l2 � ��, ✓̂l2]. On the first region, the objective is a convex quadratic with
minimum at Ȳkj 2 [✓̂l1 , ✓̂l2 � ��].

10

By the assumption that a⇤ > ✓̂l2 � ��, we know that the objective must be concave on
(✓̂l2 � ��, ✓̂l2]. It is clear that the derivative of the objective at ✓̂l2 � �� is positive. Hence, if
ã⇤ = ✓̂l2���, then the objective will take a strictly lower value at some ã⇤ 2 (✓̂l2����✏, ✓̂l2���)
(for some small ✏ > 0), contradicting optimality of ã⇤. It therefore follows that ã⇤ = ✓̂l2 .

With this knowledge, we can further simplify (48) to obtain

Q(✓̂)�Q(✓̃) �
w̃kj

2
(Ȳkj � ✓̂l2)

2 �
w̃kj

2
(Ȳkj � ✓̂l1)

2 > 0.

The second inequality follows from Ȳkj � ✓̂l1  ⇣ and ✓̂l2 � Ȳkj > ⇣. Hence, we obtain that

Q(✓̂) > Q(✓̃).
We now we direct our attention towards case (B), where similarly to before we observe that

the penalty contributions between l1 and l2 in Q(✓̂) are

l2�1X

l=l1

⇢(✓̂l+1 � ✓̂l) = ⇢(✓̂l2 � ✓̂kj+1) + ⇢(✓̂kj+1 � ✓̂kj) + ⇢(✓̂kj � ✓̂l1).

Similarly to (44) in case (A), we obtain

Q(✓̂)�Q(✓̃) �
w̃kj

2
(Ȳkj � ✓̂kj)

2 +
w̃kj+1

2
(Ȳkj+1 � ✓̂kj+1)

2

�
w̃kj

2
(Ȳkj � ✓̂l1)

2 �
w̃kj+1

2
(Ȳkj+1 � ✓̂l2)

2

+ ⇢(✓̂l2 � ✓̂kj+1) + ⇢(✓̂kj+1 � ✓̂kj) + ⇢(✓̂kj � ✓̂l1)�
1

2
��2 (49)

� inf
Ȳkj

<ab<Ȳkj+1

w̃kj

2
(Ȳkj � a)2 +

w̃kj+1

2
(Ȳkj+1 � b)2

�
w̃kj

2
(Ȳkj � ✓̂l1)

2 �
w̃kj+1

2
(Ȳkj+1 � ✓̂l2)

2

+ ⇢(✓̂l2 � b) + ⇢(b� a) + ⇢(a� ✓̂l1)�
1

2
��2. (50)

We specify the infimum in (50) because (Ȳkj , Ȳkj+1) is not closed and therefore a minimum
may not exist. Let (am, bm) be a convergent sequence in (Ȳkj , Ȳkj+1) whose limit achieves this
infimum. We now define (a⇤, b⇤) = limm!1(am, bm). By assumption (43), we know that Ȳkj+1�
Ȳkj � 3��, which implies that ✓̂l2 � ✓̂l1 � 3��. Thus, one of {(✓̂l2 � b⇤), (b⇤ � a⇤), (a⇤ � ✓̂l1)}
must be at least ��.

We first consider if b⇤ � a⇤ � ��, and denote this case (B1). Here, (50) becomes

Q(✓̂)�Q(✓̃) � inf
Ȳkj

<ab<Ȳkj+1

w̃kj

2
(Ȳkj � a)2 +

w̃kj+1

2
(Ȳkj+1 � b)2

�
w̃kj

2
(Ȳkj � ✓̂l1)

2 �
w̃kj+1

2
(Ȳkj+1 � ✓̂l2)

2 + ⇢(✓̂l2 � b) + ⇢(a� ✓̂l1) (51)

= inf
a2(Ȳkj

,Ȳkj+1)

w̃kj

2
(Ȳkj � a)2 �

w̃kj

2
(Ȳkj � ✓̂l1)

2 + ⇢(a� ✓̂l1)

+ inf
b2(Ȳkj

,Ȳkj+1)

w̃kj+1

2
(Ȳkj+1 � b)2 �

w̃kj+1

2
(Ȳkj+1 � ✓̂l2)

2 + ⇢(✓̂l2 � b) (52)

11

We can observe that (52) is the sum of two copies of (46) in case (A1). Hence, by following the
same arguments as before, we see that Q(✓̂) > Q(✓̃).

It therefore remains for us to obtain the result in the case that b⇤ � a⇤ < ��, and we denote
this case (B2). Using that the separation (43) � 3��+ 2⇣, it is straightforward to see that one
of (Ȳkj+1 � b⇤) and (a⇤ � Ȳkj) must be at least �� + ⇣. By the symmetry of the problem, it
is su�cient for us to consider the case where Ȳkj+1 � b⇤ � �� + ⇣. In this case, we can obtain
from (50) that

Q(✓̂)�Q(✓̃) � min
(ã,b̃)2B

w̃kj

2
(Ȳkj � ã)2 +

w̃kj+1

2
(Ȳkj+1 � b̃)2

�
w̃kj

2
(Ȳkj � ✓̂l1)

2 �
w̃kj+1

2
(Ȳkj+1 � ✓̂l2)

2

+ ⇢(b̃� ã) + ⇢(ã� ✓̂l1), (53)

where B =
n
(ã, b̃) : ✓̂l1  ã  b̃  Ȳkj+1 � ��� ⇣, b̃� ã < ��

o
. From this, we can extract the

terms dependent on b̃ to obtain

b̃⇤ = argmin
ã⇤b̃<ã⇤+��

w̃kj+1

2
(Ȳkj+1 � b̃)2 + ⇢(b̃� ã⇤). (54)

This objective is piecewise quadratic (and continuously di↵erentiable), with two pieces; [ã⇤, ã⇤+
��) and [ã⇤+��, ✓̂l2]. Over the second region, the objective is a convex quadratic with minimum
at Ȳkj+1 2 [ã⇤ + ��, ✓̂l2]. By following the same argument as for (48) in case (A2), we see that

b̃⇤ = ã⇤.
With this knowledge, we can further simplify (53) to obtain

Q(✓̂)�Q(✓̃) � min
✓̂l1ãȲkj+1����⇣

w̃kj

2
(Ȳkj � ã)2 +

w̃kj+1

2
(Ȳkj+1 � ã)2

�
w̃kj

2
(Ȳkj � ✓̂l1)

2 �
w̃kj+1

2
(Ȳkj+1 � ✓̂l2)

2 + ⇢(ã� ✓̂l1).

Since Ȳkj+1 � ã⇤ > ⇣, we can see that (Ȳkj+1 � ã⇤)2 � (Ȳkj+1 � ✓̂l2)
2 > 0. Thus, it su�ces for us

to show that

min
✓̂l1ãȲkj+1����⇣

w̃kj

2
(Ȳkj � ã)2 �

w̃kj

2
(Ȳkj � ✓̂l1)

2 + ⇢(ã� ✓̂l1) � 0.

This objective is exactly as in (47) in case (A1), minimised over a smaller feasible set. Hence,
it follows immediately that this holds and we can conclude that Q(✓̂) > Q(✓̃).

We now have for all cases that Q(✓̂) > Q(✓̃), which contradicts the optimality of ✓̂. Thus,
we can conclude that for j = 1, . . . , s, ✓̂kj  Ȳkj and ✓̂kj�1+1 � Ȳkj�1+1.

Lemma 9. Consider the setup of Lemma 8. For each j = 1, . . . , s, there exists k⇤j in {kj�1 +

1, . . . , kj} such that ✓̂k⇤j 2 [Ȳkj�1+1, Ȳkj].

Proof. We first show that if ✓̂kj > Ȳkj , then for any k with kj�1 + 1  k  kj , if ✓̂k > Ȳkj then

✓̂k = ✓̂kj .
We prove the first case since the proof for the second is identical. Suppose that this does

not hold, i.e. ✓̂kj > Ȳkj and there exists some (minimal) k in {kj�1 + 1, . . . , kj � 1} with

12

Ȳkj < ✓̂k < ✓̂kj . Then we construct ✓̌ by

✓̌l =

(
✓̂k for l = k, k + 1, . . . , kj

✓̂l otherwise.
(55)

We observe that the penalty contribution from ✓̌ is no more than that of ✓̂ and that the quadratic
loss for ✓̌ will be strictly less than that of ✓̂. This gives us that Q(✓̌) < Q(✓̂), contradicting the
optimality of ✓̂.

Similarly, if ✓̂kj�1+1 < Ȳkj�1+1 then the corresponding statement that for any k with kj�1 +

1  kj , if ✓̂k < Ȳkj�1+1 then ✓̂k = ✓̂kj�1+1.
We now establish a simple preliminary result. Suppose that for some j in {1, . . . , s} there

exists k in {kj�1 + 1, . . . , kj} with ✓̂k /2 [Ȳkj�1+1, Ȳkj], such that
P

{l : ✓̂l=✓̂k}wl � ⌘/2s. We

claim that if ✓̂k > Ȳkj then ✓̂k  Ȳkj + (
p
2s/⌘

p
�� _ ��). Similarly, if ✓̂k < Ȳkj�1+1 then

✓̂k � Ȳkj�1+1 � (
p

2s/⌘
p
�� _ ��).

To prove the claim, we consider the case ✓̂k > Ȳkj (the other is identical). By the first

observation, if ✓̂l > Ȳkj for l in {kj�1 + 1, . . . kj} then ✓̂l = ✓̂k. Now, for contradiction, suppose

✓̂k > Ȳkj + (
p
2s/⌘

p
�� _ ��) and let this k be minimal. Then we can construct ✓̌ by

✓̌l =

(Pkj
l=k wlȲl/

Pkj
l=k wl for l = k, . . . , kj

✓̂l otherwise.

By appealing to the optimality of ✓̂, we can easily observe that ✓̂k�1  Ȳk�1 and therefore that
the ordering of the entries of ✓̌ matches that of ✓̂. Here, we use that (

p
2s/⌘

p
�� _ ��) � ��.

We can now see that the loss term in Q(✓̌) is less than in Q(✓̂), with a di↵erence of more
than (⌘/4s)(

p
2s/⌘

p
��)2 = ��2/2, which outweighs the possible increase in the penalty con-

tribution. This gives us that Q(✓̌) < Q(✓̂), contradicting the optimality of ✓̂.
We now return to the proof of the main result. Suppose, for contradiction, that there exists

some j 2 {1, . . . , s} such that ✓̂k /2 [Ȳkj�1+1, Ȳkj] for all k = kj�1 + 1, . . . , kj and let this j be

minimal. By the first observation, we know that entries of ✓̂ corresponding to level j can take
one of at most two distinct values. That is, for k 2 {kj�1 + 1, . . . , kj}, if we have ✓̂k < Ȳkj�1+1,

then it follows that ✓̂k = ✓̂kj�1+1. Similarly, if ✓̂k > Ȳkj , then ✓̂k = ✓̂kj .
By the assumption w0

min
� ⌘/s, we have that either

X

k : ✓̂k=✓̂kj�1+1

wk � ⌘

2s
or

X

k : ✓̂k=✓̂kj

wk � ⌘

2s
.

We will without loss of generality take the second statement to be true (the proof for the first
case follows identically). Let k0 denote the minimal element in {kj�1 + 1, . . . , kj} such that

✓̂k0 = ✓̂kj . From the preliminary result established earlier, ✓̂kj  Ȳkj + (
p
2s/⌘

p
�� _ ��). By

appealing to the optimality of ✓̂, we see that ✓̂kj+1 < ✓̂kj + �� (otherwise, we could take ✓̂kj to
be Ȳkj and strictly reduce the value of the objective).

Now, we will use that the separation is at least 2(
p
2s/⌘

p
�� _ ��) + ��. By our earlier

observation (55), it is clear that any l 2 {kj +1, . . . , kj+1} with ✓̂l < Ȳkj+1 has ✓̂l = ✓̂kj+1. Note

that since ✓̂kj+1 � Ȳkj < (
p

2s/⌘
p
��_ ��) + ��, it follows that Ȳkj+1 � ✓̂kj+1 > (

p
2s/⌘

p
��_

��)+⇣ and therefore that
P

{k : ✓̂k=✓̂kj+1}wk < ⌘/2s by the preliminary result. Since w0

min
� ⌘/s

and separation (43) � 2(
p
2s/⌘

p
��_��)+��+⇣, we can define l0 2 {kj+1, . . . , kj+1} minimal

such that ✓̂l0 � Ȳkj+1.

13

Now, in order to contradict the optimality of ✓̂ we construct a new feasible point ✓̃ by setting

✓̃l =

8
><

>:

Ȳkj for l = k0, . . . , kj

✓̂l0 for l = kj + 1, . . . , l0 � 1

✓̂l otherwise.

It follows that for l = kj + 1, . . . , l0 � 1 we have

|✓̂l � Ȳl| > (
p
2s/⌘

p
�� _ ��) + ⇣

|✓̃l � Ȳl|  (
p
2s/⌘

p
�� _ ��) + ⇣.

It is also straightforward to see that |✓̂kj � Ȳl| � |Ȳkj � Ȳl| for l = k0, . . . , kj . If follows that

the loss contribution in Q(✓̃) is strictly less than that in Q(✓̂). Hence, using ✓̂l0 � ✓̂kj > ��, we
obtain

Q(✓̂)�Q(✓̃) >⇢(✓̂l0 � ✓̂kj+1) + ⇢(✓̂kj+1 � ✓̂kj) + ⇢(✓̂kj � ✓̂k0�1)

� 1

2
��2 � ⇢(Ȳkj � ✓̂k0�1)

�0,

contradicting the optimality of ✓̂. We conclude that for j = 1, . . . , s, there exists k⇤j in {kj�1 +

1, . . . , kj} such that ✓̂k⇤j 2 [Ȳkj�1+1, Ȳkj].

Lemma 10. Consider the univariate objective (11), relaxing the normalisation constraint to
w̌ :=

P
k wk  1. Suppose that wT Ȳ = 0, and that kȲ k1 < (2 ^

p
�w̌)�/w̌. Then ✓̂ = 0.

Proof. Let Pw = I � 1wT /w̌ and Dw 2 RK⇥K be the diagonal matrix with entries Dkk
p
wk.

First note that

Q(✓)�Q(Pw✓) =
1

2

KX

k=1

wk(Ȳk � ✓k)
2 � 1

2

KX

k=1

wk(Ȳk � ✓k + wT✓)2

= �1

2

KX

k=1

wk(w
T✓)(2Ȳk � 2✓k + wT✓)

=

✓
1� 1

2
w̌

◆
(wT✓)2 � 0.

Thus for all ✓ 2 RK , we have

Q(✓)�Q(0) � 1

2
kDwPw(Ȳ � ✓)k22 �

1

2
kDwPwȲ k22 +

K�1X

k=1

⇢(✓(k+1) � ✓(k))

� 1

2
kDwPw(Ȳ � ✓)k22 �

1

2
kDwPwȲ k22 + ⇢(✓(K) � ✓(1))

� min
⇠2[�⌧,⌧]K

F (✓, ⇠, w)

where

F (✓, ⇠, w) =
1

2
kDwPw(⇠ � ✓)k22 �

1

2
kDwPw⇠k22 + ⇢(✓(K) � ✓(1)).

Consider minimising F over RK ⇥ [�⌧, ⌧]K ⇥ S, where S ✓ RK is the unit simplex scaled by
w̌. We aim to show this minimum is 0. As with the first claim in the proof of Lemma 8, it

14

is straightforward to see that for any feasible (✓, ⇠, w), there exists ✓0 with k✓0k1  k⇠k1 and
F (✓0, ⇠, w)  F (✓, ⇠, w). Hence,

inf
(✓,⇠,w)2RK⇥[�⌧,⌧]K⇥S

F (✓, ⇠, w) = inf
(✓,⇠,w)2[�⌧,⌧]K⇥[�⌧,⌧]K⇥S

F (✓, ⇠, w).

As on the RHS we are minimising a continuous function over a compact set, we know a minimiser
must exist. Let (✓̃, ⇠̃, w̃) be a minimiser (to be specified later). Observe that

kDw̃Pw̃(⇠ � ✓)k22 � kDw̃Pw̃⇠k22 = �2⇠TP T
w̃D2

w̃Pw̃✓ + ✓TP T
w̃D2

w̃Pw̃✓

is linear as a function of ⇠. Hence it is minimised over the set

{⇠ : k⇠k1  ⌧} = conv({�⌧, ⌧}K)

at some point in {�⌧, ⌧}K . Here conv(·) denotes the convex hull operation. We thus have

Q(✓)�Q(0) � min
⇠2{�⌧,⌧}K

1

2
kDw̃Pw̃(⇠ � ✓)k22 �

1

2
kDw̃Pw̃⇠k22 + ⇢(✓(K) � ✓(1)).

Let us take (✓̃, ⇠̃) 2 RK ⇥ {�⌧, ⌧}K to be a minimiser of the RHS.
Note that if we have ⇠̃j = ⇠̃k then we may take ✓̃j = ✓̃k. Indeed, we may construct ✓̌ 2 RK

by setting

✓̌l =

(
argminb2{✓̃j ,✓̃k}(⇠̃j � b)2 for l = j, k

✓̃l otherwise.

Since the penalty contribution from ✓̌ is not greater than that of ✓̃, it follows that Q(✓̌)  Q(✓̃).
Thus, we can assume that entries of ✓̃ can take one of only two distinct values.

Next we write ↵̃ =
P

k:⇠̃k=�⌧ w̃k and observe that w̃T ⇠̃ = (w̌� 2↵̃)⌧ . Let us set s = mink ✓̃k

and x = maxk ✓̃k �mink ✓̃k. Then we have

F (✓̃, ⇠̃, w̃) =
1

2
↵̃{(2↵̃� 1� w̌)⌧ � s}2 + 1

2
(w̌ � ↵̃)((2↵̃+ 1� w̌)⌧ � s� x)2

+ ⇢(x)� 2

w̌
↵̃(w̌ � ↵̃)⌧2

=
1

2w̌
↵̃(w̌ � ↵̃)(2⌧ � x)2 + ⇢(x)� 2

w̌
↵̃(w̌ � ↵̃)⌧2

=
w̌

8
(2⌧ � x)2 + ⇢(x)� 1

2
⌧2. (56)

In the second line above, we have solved for s to find that

s =
1

w̌
{⌧(1� w̌)(w̌ � 2↵̃) + (↵̃� w̌)x}.

In the third line above, we have solved for ↵̃ to obtain ↵̃ = w̌/2 and hence ↵̃(w̌ � ↵̃)/w̌ = w̌/4.
These follow from optimality of ✓̃ and w̃ respectively. The result follows from applying Lemma 7,
setting  = w̌/4.

S2.2 Proof of Theorem 6

We begin by defining P 0 to be the orthogonal projection onto the linear space

V0 =

8
<

:µ+
jX

j=1

KjX

k=1

{Xij=k}✓jk : (µ, ✓) 2 R⇥⇥0

9
=

; .

15

The residuals from the oracle least-squares fit are (I �P 0)Y = (I �P 0)". The partial residuals
R(j) as defined in (18) for the jth variable are therefore

R(j)
i =

KjX

k=1

{Xij=k}✓̂
0

jk +
⇥
(I � P 0)"

⇤
i
. (57)

For j = 1, . . . , p, we define R̄(j)
k =

Pn
i=1 {Xij=k}R

(j)
i /njk for k = 1, . . . ,Kj , reordering the

labels such that R̄(j)
1

 · · ·  R̄(j)
Kj

. We then aim to apply the arguments of Theorem 5 to ✓̂j

defined by

✓̂j 2 argmin
✓j2⇥j

1

2

KjX

k=1

wjk

⇣
R̄(j)

k � ✓jk
⌘2

+

Kj�1X

k=1

⇢(✓jk+1 � ✓jk). (58)

In order to do this, we define the events (for some ⌧j to be determined later):

⇤(1)

j =
n
|✓̂0jkl � ✓0jkl |  ⌧j : l = 1, . . . , sj

o
(59)

⇤(2)

jk =

(�����
1

njk

nX

i=1

{Xij=k}((I � P 0)")i

����� <
1

2

p
⌘�⇤jsj�j

)
. (60)

On the intersection of events \Kj

k=1
⇤(2)

jk , we have that |R̄
(j)
k �✓̂0jk| <

p⌘�⇤jsj�j/2. By following
an identical approach to that involved in computing (35), we have that

P
⇣
\Kj

k=1
⇤(2)

jk

⌘
� 1� 2 exp

�
nwj,min⌘�⇤jsj�

2

j

8�2
+ log(Kj)

!
,

where we recall that wjk = njk/n.

We now turn our attention to the event ⇤(1)

j . Note that if sj = 1, then this is immediately

satisfied since ✓̂
0

j = ✓0

j = 0. If sj > 1, we use that the oracle least squares estimate ✓̂
0

= AY is
a linear transformation A of the responses (Yi)ni=1

. For each i = 1, . . . , n, Yi has an independent
(non-central) sub-Gaussian distribution with parameter �. Therefore for each k = 1, . . . ,Kj ,

✓̂0jk � ✓0jk also has a sub-Gaussian distribution, with parameter at most �c�1/2
min

(recalling that

cmin = (maxl(AAT)ll)�1). This enables us to show that

P
⇣
⇤(1)

j

⌘
� 1� 2 exp

�
cmin⌧2j
2�2

+ log(sj)

!
.

We can now set ⌧j =
p⌘�⇤jsj�j/2. From (26) and the triangle inequality, on the event ⇤(1)

j
we have that

�(✓̂
0

j) � �(✓0

j)�
p
⌘�⇤jsj�j

� 3

1 +

p
2

⌘

!q
�j�⇤j �j .

Thus, on the intersection of events ⇤(1)

j \
⇣
\Kj

k=1
⇤(2)

jk

⌘
, we can proceed as in the proof of Theo-

rem 5 from (38), to conclude that ✓̂j = ✓̂
0

j .

16

It immediately follows that on the intersection of events \p
j=1

⇣
⇤(1)

j \
⇣
\Kj

k=1
⇤(2)

jk

⌘⌘
, we have

✓̂ = ✓̂
0

. By a union bound, this occurs with probability at least

P
⇣
\p
j=1

⇣
⇤(1)

j \
⇣
\Kj

k=1
⇤(2)

jk

⌘⌘⌘
� 1� 2

pX

j=1

"
exp

�
nj,min⌘�⇤jsj�

2
j

8�2
+ log(Kj)

!

+ exp

�
cmin⌘�⇤jsj�

2

j

8�2
+ log(sj)

!#

� 1� 4
pX

j=1

exp

�
(nj,min ^ cmin)⌘�⇤jsj�

2

j

8�2
+ log(Kj)

!
,

where in the final line we use sj  Kj .

S3 Additional experimental information

S3.1 Details of methods

Tree-based methods

We used the implementation of the random forest procedure [Breiman, 2001] in the R package
randomForest [Liaw and Wiener, 2002] with default settings. CART [Breiman et al., 1984] was
implemented in the R package rpart [Therneau and Atkinson, 2019], with pruning according
to the 1-SE rule (as described in the package documentation).

CAS-ANOVA

The CAS-ANOVA estimator ✓̂
cas

optimises over (µ,✓) a sum of a squared loss term (3) and
an all-pairs penalty term (4). In particular, Bondell and Reich [2009] consider two regimes of
weight vectors w. The first is not data-dependent and sets wj,k1k2 = (Kj + 1)�1

p
njk1 + njk2 .

The second, ‘adaptive CAS-ANOVA’, uses the ordinary least squares estimate for ✓ to scale the
weights. Here, wj,k1k2 = (Kj + 1)�1

p
njk1 + njk2 |✓̂OLS

jk1
� ✓̂OLS

jk2
|�1.

Here we introduce a new variant of adaptive CAS-ANOVA, following ideas in Bühlmann and
Van De Geer [2011] for a 2-stage adaptive Lasso procedure. Instead of using the ordinary least

squares estimate ✓̂
OLS

in the above expression, an initial (standard) CAS-ANOVA estimate is
used to scale the weights, with � selected for the initial estimate by 5-fold cross-validation. In
simulations, this outperformed the adaptive CAS-ANOVA estimate using ordinary least squares
initial estimates so in the interests of time and computational resources this was omitted from
the simulation study. Henceforth adaptive CAS-ANOVA will refer to this 2-stage procedure.

The authors describe the optimisation of ✓̂
cas

as a quadratic programming problem, which
was solved using the R package rosqp [Anderson, 2018]. Here we used our own implementation
of the quadratic programming approach described by the authors. We found it considerably
faster than the code available from the authors’ website, and uses ADMM-based optimisation
[Boyd et al., 2011] tools not available at the time of its publication. We also found, as discussed
in Section 5.1 of Maj-Kańska et al. [2015], that we could not achieve the best results using
the publicly available code. Lastly, using our own implementation allowed us to explore a
modification of CAS-ANOVA using the more modern approach of adaptive weights via a 2-
stage procedure [Bühlmann and Van De Geer, 2011] to compare SCOPE to a wider class of
all-pairs penalty procedures.

17

For large categorical variables, solutions are slow to compute and consume large amounts
of memory. In the case of binary response, CAS-ANOVA models were fitted iterating a locally
quadratic approximation to the loss function.

DMR

The DMR algorithm [Maj-Kańska et al., 2015] is implemented in the R package DMRnet [Prochenka-
Sotys and Pokarowski, 2018]. The degrees of freedom in the model is decided by 5-fold cross-
validation. It is based on pruning variables using the Group Lasso [Yuan and Lin, 2006] to obtain
at a low-dimensional model, then performing backwards selection based on ranking t-statistics
for hypotheses corresponding to each fusion between levels in categorical variables.

The cross-validation routine appeared to error when all levels of all categorical variables
were not present in one of the folds. In Section 6.2, cross-validation was therefore not possible
so model selection was performed based on Generalized Information Criterion (GIC) [Zheng
and Loh, 1995]. In all other examples, models were selected via 5-fold cross-validation.

Bayesian e↵ect fusion

In Section 6.1.1 we include Bayesian e↵ect fusion [Pauger and Wagner, 2019], implemented in
the R package effectFusion [Pauger et al., 2019]. Coe�cients within each categorical variable
were modelled with a sparse Gaussian mixture model. The posterior mean was estimated with
1000 samples.

Lasso

In Section 6.1.2 we also include Lasso [Tibshirani, 1996] fits, to serve as a reference point. Of
course, this is unsuitable for models where levels in categorical variables should be clustered
together, but the advanced development of the well-known R package glmnet [Friedman et al.,
2010] nevertheless sees its use in practice.

In order to make the fit symmetric across the categories within each variable, models were
fitted with an unpenalised intercept and featuring dummy variables for all of the categories
within each variable. This is instead of the corner-point dummy variable encoding of factor
variables that is commonly used when fitting linear models. Models are fitted and cross-validated
with cv.glmnet using the default settings.

SCOPE

For SCOPE, we have provided the R package CatReg [Stokell, 2021]. The univariate update
step (see Section 3.1) is implemented in C++ using Rcpp [Eddelbuettel and François, 2011],
with models fitted using a wrapper in R. For the binary response case, the outer loop to iterate
the local quadratic approximations in the proximal Newton algorithm are done within R. In
the future, performance could be improved by iterating the univariate update step (and the
local quadratic approximations, as in Sections 6.2 and 6.3) within some lower-level language.
In higher-dimensional experiments, SCOPE was slowed by cycling through all the variables; an
active-set approach to this could make it faster still.

S3.2 Further details of numerical experiments

For the experiments in Section 6.1, we define the signal-to-noise ratio (SNR) as �S/�, where �S
is the standard deviation of the signal Y � ", and � is the standard deviation of the noise ".

18

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Setting 1, σ2 = 1

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Setting 2, σ2 = 1

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Setting 3, σ2 = 1

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Setting 1, σ2 = 6.25

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Setting 2, σ2 = 6.25

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Setting 3, σ2 = 6.25

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0
2

4
6

8
10

12

Setting 1, σ2 = 25

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0
2

4
6

8
10

12

Setting 2, σ2 = 25
M

SP
E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0
2

4
6

8
10

12

Setting 3, σ2 = 25

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0
5

10
15

20

Setting 1, σ2 = 100

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0
5

10
15

20

Setting 2, σ2 = 100

M
SP

E

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K)

0
5

10
15

20

Setting 3, σ2 = 100

M
SP

E

Figure 9: Prediction performance of various methods: (A) SCOPE-8; (B) SCOPE-32; (C)
SCOPE-CV; (D) Linear regression; (E) Oracle least squares; (F) CAS-ANOVA; (G) Adaptive
CAS-ANOVA; (H) DMR; (I) BEF; (J) CART; (K) RF. Note that some ‘boxes’ are not visible
in some of the plots; this is due to the MSPE in the tests being beyond the range of the plot.

S3.2.1 Low-dimensional simulations

In Table 7 we include details of computation time and dimension of the fitted models. Figure 9
visualises the results also summarised in Table 1 in the main paper.

Mean fitted model dimension
�2: 1 6.25 25 100 Mean computation time (s)

SCOPE-8 7.2 8.5 4.7 4.3 16
SCOPE-32 9.6 12.6 13.2 9.8 48
SCOPE-CV 7.9 10.3 16.8 10.9 68

Oracle least squares 7.0 7.0 7.0 7.0 0.00
Linear regression 231.0 231.0 231.0 231.0 0.01

CAS-ANOVA 35.2 70.0 74.3 52.4 4679
Adaptive CAS-ANOVA 13.4 31.3 36.9 32.5 9659

DMR 7.0 7.2 5.3 2.7 21
BEF 7.3 6.3 4.1 2.0 975

CART 0.01
RF 0.66

Table 7: Mean fitted model dimension and computation time for the various methods.

19

(A) (B) (C) (D) (E) (F) (G) (H)

0
5

10
15

20
25

Setting 1
M
SP
E

(A) (B) (C) (D) (E) (F) (G) (H)

0
5

10
15

20
25

Setting 2

M
SP
E

(A) (B) (C) (D) (E) (F) (G) (H)

0
10

20
30

40
50

Setting 3

M
SP
E

(A) (B) (C) (D) (E) (F) (G) (H)

0
5

10
15

Setting 4

M
SP
E

(A) (B) (C) (D) (E) (F) (G) (H)

0
50

10
0

15
0

Setting 5

M
SP
E

(A) (B) (C) (D) (E) (F) (G) (H)

0
50

10
0

15
0

Setting 6

M
SP
E

(A) (B) (C) (D) (E) (F) (G) (H)

0
5

10
15

20
25

Setting 7

M
SP
E

(A) (B) (C) (D) (E) (F) (G) (H)

0
5

10
20

30

Setting 8

M
SP
E

Figure 10: Prediction performance of various methods: (A) SCOPE-8; (B) SCOPE-32; (C)
SCOPE-CV; (D) Oracle least squares; (E) DMR; (F) CART; (G) RF; (H) Lasso. Note that
some ‘boxes’ are not visible in some of the plots; this is due to the MSPE in the tests being
beyond the range of the plot.

S3.2.2 High-dimensional simulations

Here we include additional results relating to the high-dimensional experiments. Figure 10
visualises the results in Table 2 of the main paper.

Setting: 1 2 3 4 5 6 7 8

SCOPE-8 224 322 348 76 234 518 209 175
SCOPE-32 134 341 502 51 283 650 113 161
SCOPE-CV 951 1739 2450 332 1516 2892 767 902

DMR 26 38 39 26 30 36 30 29
CART 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1

RF 5.7 5.7 5.9 2.7 5.8 5.8 5.9 5.8
Lasso 1.5 1.5 1.6 1.2 1.4 1.5 1.5 1.5

Table 8: Mean computation time (s)

20

Setting: 1 2 3 4 5 6 7 8

SCOPE-8 6.9 9.4 9.8 6.9 21.3 27.1 9.3 7.2
SCOPE-32 20.7 37.5 38.0 19.9 75.8 26.1 32.9 31.3
SCOPE-CV 21.4 40.4 40.8 19.5 103.7 26.2 36.6 17.9

DMR 1.9 4.9 4.7 3.4 3.7 22.8 2.3 7.5
Lasso 15.7 167.1 152.0 32.7 143.7 469.7 35.8 82.8

Table 9: Mean fitted model dimension

Setting �: 4 8 16 32 64

1 0.028 0.290 0.196 0.138 0.348
2 0.002 0.016 0.234 0.298 0.450
3 0.006 0.012 0.286 0.248 0.448
4 0.030 0.356 0.244 0.100 0.270
5 0.000 0.000 0.026 0.070 0.904
6 0.000 0.000 0.464 0.534 0.002
7 0.006 0.092 0.234 0.144 0.524
8 0.264 0.446 0.102 0.018 0.170

Table 10: Proposition of times each � was selected by cross-validation.

References

E. Anderson. rosqp: Quadratic Programming Solver using the ’OSQP’ Library, 2018. R package
version 0.1.0.

H. D. Bondell and B. J. Reich. Simultaneous factor selection and collapsing levels in ANOVA.
Biometrics, 65(1):169–177, 2009.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends R� in Machine learning, 3(1):1–122, 2011.

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression,
with applications to biological feature selection. The Annals of Applied Statistics, 5(1):232,
2011.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classification and Regression Trees. The
Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, 1984.

P. Bühlmann and S. Van De Geer. Statistics for high-dimensional data: methods, theory and
applications. Springer Science & Business Media, 2011.

D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8):1–18, 2011.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22,
2002.

A. Maj-Kańska, P. Pokarowski, A. Prochenka, et al. Delete or merge regressors for linear model
selection. Electronic Journal of Statistics, 9(2):1749–1778, 2015.

21

D. Pauger and H. Wagner. Bayesian e↵ect fusion for categorical predictors. Bayesian Analysis,
14(2):341–369, 2019.

D. Pauger, M. Leitner, H. Wagner, and G. Malsiner-Walli. e↵ectFusion: Bayesian E↵ect Fusion
for Categorical Predictors, 2019. R package version 1.1.1.

A. Prochenka-Sotys and P. Pokarowski. DMRnet: Delete or Merge Regressors Algorithms for
Linear and Logistic Model Selection and High-Dimensional Data, 2018. R package version
0.2.0.

B. Stokell. CatReg: Solution Paths for Linear and Logistic Regression Models with Categorical
Predictors, with SCOPE Penalty https://CRAN.R-project.org/package=CatReg, 2021.

T. Therneau and B. Atkinson. rpart: Recursive Partitioning and Regression Trees, 2019. R
package version 4.1-15.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

X. Zheng andW.-Y. Loh. Consistent variable selection in linear models. Journal of the American
Statistical Association, 90(429):151–156, 1995.

22

