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A Proofs

A.1 Proof of Proposition 1
Abbreviating D = D

(k+1)
n,d , the null space of D is the number of its nonzero singular values or equivalently, the number

of nonzero eigenvalues of DTD. Following from (8), and abbreviating Q = D
(k+1)
N and I = IN ,

DTD = QTQ⊗ I ⊗ · · · ⊗ I + I ⊗QTQ⊗ · · · ⊗ I + . . . + I ⊗ I ⊗ · · · ⊗QTQ,

the Kronecker sum of QTQ with itself, a total of d times. Using a standard fact about Kronecker sums, if we denote by
ρi, i = 1, . . . , N the eigenvalues of QTQ then

ρi1 + ρi2 + · · ·+ ρid , i1, . . . , id ∈ {1, . . . , N}

are the eigenvalues of DTD. By counting the multiplicity of the zero eigenvalue, we arrive at a nullity for D of (k+ 1)d.
It is straightforward to check that the vectors specified in the proposition, given by evaluations of polynomials of max
degree k, are in the null space, and that these are linearly independent, which completes the proof.

A.2 Proof of Proposition 2
Let us define

B
(k+1)
N =

[
C

(k+1)
N

D
(k+1)
N

]
∈ RN×N ,

where the first k + 1 rows are given by a matrix C(k+1)
N ∈ R(k+1)×N that completes the row space, as in Lemma 2 of

Wang et al. (2014), or Section 6.2 of Tibshirani (2020). Now, again by Lemma 2 of Wang et al. (2014), or Section 6.3
of Tibshirani (2020), (

H
(k+1)
N

)−1
=

1

k!
B

(k+1)
N (S.1)

where H(k+1)
N ∈ RN×N is the falling factorial basis matrix of order k, which has elements[

H
(k+1)
N

]
ij

= hkN,j(i/N), i, j = 1, . . . , N,

with hkN,i, i = 1, . . . , N denoting the falling factorial functions in (10) with respect to design points 1/N, 2/N, . . . , 1.
We now transform variables in (7) by defining

θ =
(
H

(k+1)
N ⊗ · · · ⊗H(k+1)

N

)
α,

and using (S.1), this turns (7) into an equivalent basis form,

minimize
α∈Rn

1

2

∥∥∥y − (H(k+1)
N ⊗ · · · ⊗H(k+1)

N

)
α
∥∥∥2
2

+ λk!

∥∥∥∥∥∥∥∥∥∥


I0N ⊗H

(k+1)
N ⊗ · · · ⊗H(k+1)

N

H
(k+1)
N ⊗ I0N ⊗ · · · ⊗H

(k+1)
N

...
H

(k+1)
N ⊗H(k+1)

N ⊗ · · · ⊗ I0N

α
∥∥∥∥∥∥∥∥∥∥
1

,
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where I0N ∈ R(N−k−1)×N denotes the last N − k − 1 rows of the identity IN . We can rewrite the problem once more
by parametrizing the evaluations according to f in (11), which we claim yields (12). The equivalence between loss
terms in the above problem and (12) is immediate (by definition of f ); to see the equivalence between penalty terms, it
can be directly checked that

k!
(
I0N ⊗H

(k+1)
N ⊗ · · · ⊗H(k+1)

N

)
α

contains the differences of the function ∂kf/∂xk1 over all pairs of grid positions that are adjacent in the x1 direction,
where f is as in (11). This, combined with the fact that ∂kf/∂xk1 is constant in between lattice positions, means that

k!
∥∥∥(I0N ⊗H(k+1)

N ⊗ · · · ⊗H(k+1)
N

)
α
∥∥∥
1

=
∑
x−1

TV

(
∂kf(·, x−1)

∂xk1

)
,

the total variation of ∂kf/∂xk1 added up over all slices of the lattice Zn,d in the x1 direction. Similar arguments apply
to the penalty terms corresponding to dimensions j = 2, . . . , d, and this completes the proof.

A.3 Proof of Theorem 1
Denote by fε = ηε ∗ f the mollified version of f , where ηε(x) = ε−dη(x/ε), and η : Rd → R is the standard mollifier,
defined by

η(x) =

c exp

(
1

‖x‖22 − 1

)
if ‖x‖2 ≤ 1,

0 else,

and c > 0 is a normalization constant so that η integrates to 1. By construction, for any ε > 0, we have fε ∈ C∞(U).
Now from (18), simply exchanging the sum over absolute partial derivatives and the integral, we have

TV(fε;U) =

d∑
j=1

∫
U

∣∣∣∣∂fε(x)

∂xj

∣∣∣∣ dx
=

d∑
j=1

∫
U−j

∫
Ix−j

∣∣∣∣∂fε(xj , x−j)∂xj

∣∣∣∣ dxj dx−j
=

d∑
j=1

∫
U−j

TV
(
fε(·, x−j); Ix−j

)
dx−j ,

where in the last line we applied the representation of TV for smooth functions in (18), but to the univariate function
xj 7→ fε(xj , x−j), for fixed x−j . Recalling standard results on approximation of BV functions by smooth functions
(see, for example, Theorem 5.22 in Evans and Gariepy (2015)), by sending ε → 0, we have that the left-most and
right-most sides of the previous display approach those in (20), completing the proof.

A.4 Proof of Theorem 3
Abbreviate N ′ = N − k − 1. Let βi, ui, vi be a triplet of nonzero singular value, left singular vector, and right singular
vector of D(k+1)

N,1 , for i ∈ [N ′] and let pj , j ∈ [k + 1] form an orthogonal basis for the null space of D(k+1)
N,1 . From

Lemma S.1 it suffices to show incoherence of ui, vi, i ∈ [N ′], and pi, i ∈ [k + 1]. Incoherence of ui, i ∈ [N ′] and vi,
i ∈ [N ′]is established in Sadhanala et al. (2017) . Incoherence of pi, i ∈ [k + 1] may be seen by choosing, e.g., these
vectors to be the discrete Legendre orthogonal polynomials as in Neuman and Schonbach (1974). Applying Lemma S.1,
we can see that D(k+1)

n,d satisfies the incoherence property, as defined in Theorem 2, say with a constant µ.
From the incoherence property and Theorem 2, the KTF estimator θ̂, satisfies

1

n
‖θ̂ − θ0‖22 = OP

(
κ

n
+
|I|
n

+
µ

n

√√√√ log n

n

∑
i∈[N ]d\(I∪[k+1]d)

1

ξ2i
· ‖∆θ0‖1

)
, (S.2)

where we abbreviate ∆ = D
(k+1)
n,d , ξi, i ∈ [N ]d are eigenvalues of ∆T∆ with ξi = 0 for i ∈ [k + 1]d. We reindexed

the eigenvalues so that they correspond to grid positions.
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Recall the shorthand s = (k + 1)/d. For s ≤ 1/2, set I = [k + 2]d \ [k + 1]d. From Lemma S.6,

∑
i∈[N ]d\(I∪[k+1])d

1

ξ2i
≤ c

{
n s < 1/2

n log n s = 1/2.

Plugging this into (S.2) gives the desired bounds when s ≤ 1/2:

1

n
‖θ̂ − θ0‖22 =

OP

(
(k+2)d

n + ‖∆θ0‖1
√

log n
)

s < 1/2

OP

(
(k+2)d

n + ‖∆θ0‖1 log n
)

s = 1/2.

Now consider the case s > 1/2. Set I = {i ∈ [N ]d : ‖(i − k − 2)+‖2 < r} \ [k + 1]d for an r ∈ [1,
√
dN ] to be

chosen later. |I| ≤ (r + k + 1)d because I ⊆
[
brc+ k + 1

]d
. Lemma S.6 shows that for a constant c > 0 depending

only on k, d, ∑
i∈[N ]d\(I∪[k+1]d)

1

ξ2i
≤ cn2s/rd(2s−1).

Plug this bound in (S.2) and in order to minimize the resulting bound, choose r to balance

(r + k + 1)d with
Cn√
n

√
n2s/rd(2s−1) log n.

This leads us to take
(r + k + 1)d � (Cn

√
log n)

2
2s+1n

2s−1
2s+1

when Cn
√

log n/n = OP(1) and r = 1 otherwise. With this choice (S.2) gives the desired bound for s > 1/2. This
completes the proof.

A.5 Incoherence of Kronecker product type operators
Let

∆ =


D ⊗ I ⊗ · · · ⊗ I
I ⊗D ⊗ · · · ⊗ I

...
I ⊗ I ⊗ · · · ⊗D

 (S.3)

where each Kronecker product has d terms. With D = D
(k+1)
N,1 , I = IN , we get the KTF penalty operator ∆ = D

(k+1)
n,d .

Lemma S.1. Let ∆ be as defined in (S.3) for a matrix D ∈ RN ′×N with N ′ ≤ N . Let γi, ui, vi, i ∈ [N ] denote the
singular values of D, its left and right singular vectors. Note that γi = 0, ui = 0, vi ∈ null(D) for i ∈ [p] where
p = nullity(D). If these singular vectors are incoherent, that is ‖vi‖∞ ≤ µ/

√
N, ‖ui‖∞ ≤ µ/

√
N ′ for a constant

µ ≥ 1, then the left singular vectors ν of ∆ are incoherent with a constant µd, that is, ‖ν‖∞ ≤ µd/
√
Nd−1N ′.

Note that p = k + 1 when ∆ is the KTF penalty operator with D = D
(k+1)
N,1 .

Proof of Lemma S.1. Abbreviate ρi = γ2i for i ∈ [N ]. We are looking for a total of Nd − pd eigenvectors for ∆∆T.
Assume for exposition that d = 3. For any (i, j, k) ∈ [N ]d \ [p]d (where \ is the set difference operator), the vectors

νi,j,k :=
1

√
ρi + ρj + ρk

 γi · ui ⊗ vj ⊗ vk
γj · vi ⊗ uj ⊗ vk
γk · vi ⊗ vj ⊗ uk

 (S.4)

are eigenvectors of ∆∆T as verified below.

∆∆T

 γi · ui ⊗ vj ⊗ vk
γj · vi ⊗ uj ⊗ vk
γk · vi ⊗ vj ⊗ uk

 = ∆
(
γ2i + γ2j + γ2k

)
vi ⊗ vj ⊗ vk (S.5)
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= (ρi + ρj + ρk)

 γi · ui ⊗ vj ⊗ vk
γj · vi ⊗ uj ⊗ vk
γk · vi ⊗ vj ⊗ uk


We see all Nd − pd eigenvectors of ∆∆T here. Notice that ‖zi,j,k‖2 = 1 and the incoherence is readily available given
that the left and right singular vectors of D are incoherent.

For general d, these Nd − pd eigenvectors are given by

νi1,i2,.,id =
1√∑d
j=1 ρij


γi1 · ui1 ⊗ vi2 ⊗ . . . vid
γi2 · vi1 ⊗ ui2 ⊗ . . . vid

...
γid · vi1 ⊗ vi2 ⊗ . . . uid

 (S.6)

with eigenvalues
∑d
j=1 ρij and are easily seen to be incoherent.

A.6 Upper bound for continuous KTV class
Recalling the continuous analog of KTF penalty from (12), define the class

KTVk
n,d(C) =

{
f :

d∑
j=1

∑
x−j

TV

(
∂kf(·, x−j)

∂xkj

)
≤ C

}

for C > 0. If the true signal θ0 on the grid is an evaluation of a function f ∈ KTVd
k(C), the rates in Theorem 3 hold

with Cn replaced by C, due to the following result.

Lemma S.2. Let C > 0 and let d ≥ 1, k ≥ 0 be integers. For all f ∈ KTVk
n,d(C), if θf ∈ Rn is the evaluation of f

on the grid points Zn,d, then
‖D(k+1)

n,d θf‖1 ≤ c1C

for a constant c1 that depends only on k and d.

Proof of Lemma S.2. Let f be an arbitrary function from KTVk
n,d(C). Pick a j ∈ [N ] and an x−j and consider the

function φ(·) = f(·, x−j) (f with all but its j argument fixed to elements of x−j appropriately in order). From Theorem
1 in Mammen (1991) and its proof, there exists a spline φ̃ such that

φ̃(i/N) = φ(i/N), i ∈ [N ]

TV(φ̃(k)) ≤ TV(φ(k))

Let t1, . . . , tL be the knots of φ̃, which are not necessarily in the set of input points. Because it is a spline, φ̃
can be written as the sum of a polynomial and a linear combination of kth degree truncated power basis functions
gt : x 7→ (x− t)k+/k!

φ̃(u) = p(u) +

L∑
`=1

β`gt`(u), u ∈ [0, 1]

where p is a polynomial of degree ≤ k and β` ∈ R, ` ∈ [L]. Let D(k+1)
1d = D

(k+1)
N,1 . Now

∥∥∥∥D(k+1)
1d

φ(1/N)
...

φ(N/N)

∥∥∥∥
1

=

∥∥∥∥D(k+1)
1d

 φ̃(1/N)
...

φ̃(N/N)

∥∥∥∥
1

=

∥∥∥∥D(k+1)
1d

 p(1/N)
...

p(N/N)

+

L∑
`=1

β` ·D(k+1)
1d

 gt`(1/N)
...

gt`(N/N)

∥∥∥∥
1
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≤
L∑
`=1

|β`|‖D(k+1)
1d G

(k)
` ‖1 (S.7)

where the vector G(k)
` is the evaluation of gt` on 1/N, . . . , N/N , that is (G

(k)
` )i = gt`(i/N), i ∈ [N ]. Here we used

the fact that D(k+1)
1d times the evaluations of a polynomial at the input points 1/N, . . . , N/N is 0.

The terms in (S.7) can be bound as follows. For ` ∈ [L], let i` = maxi∈[N ]{i/N ≤ t`}, that is, let i`/N be the
largest input point that is not greater the knot t`. For any vector v ∈ RN , and i ∈ [N − k − 1], (D

(k+1)
1d v)i = 0 if

(vi, . . . , vi+k) is the evaluation of a polynomial at i/N, . . . , (i+ k + 1)/N . gt` is a polynomial on [0, t`] and on [t`, 1]

for ` ∈ [L]. Therefore, D(k+1)
1d G

(k)
` is nonzero in at most k + 1 elements. Letting Ai denote the ith row of matrix A,

we can write

‖D(k+1)
1d G

(k)
` ‖1 =

N−k−1∑
i=1

∣∣∣(D(k+1)
1d

)
i
G

(k)
`

∣∣∣
=

i∑̀
i=(i`−k)∨1

∣∣∣(D(k+1)
1d

)
i
G

(k)
`

∣∣∣
≤

i∑̀
i=(i`−k)∨1

∥∥∥(D(k+1)
1d

)
i

∥∥∥
1
gt`

(
i` + k + 1

N

)

≤
i∑̀

i=(i`−k)∨1

∥∥∥(D(k+1)
1d

)
i

∥∥∥
1

(
k + 1

N

)k
1

k!

≤ (k + 1) ·
(
k + 1

N

)k
1

k!
max

i∈[N−k−1]

∥∥∥(D(k+1)
1d

)
i

∥∥∥
1

= (k + 1) ·
(
k + 1

N

)k
1

k!
· 2k+1Nk

= bk

where bk is a constant depending only on k. Plugging this upper bound in (S.7),

∥∥∥∥D(k+1)
1d

φ(1/N)
...

φ(N/N)

∥∥∥∥
1

≤ bk
L∑
`=1

|β`| = bkTV(φ̃(k)) ≤ bkTV(φ(k)).

This means,

‖D(k+1)
n,d θf‖1 =

d∑
j=1

∑
x−j

∥∥∥∥D(k+1)
1d

 f(1/N, x−j)
...

f(N/N, , x−j)

∥∥∥∥
1

≤
d∑
j=1

∑
x−j

bkTV

(
∂kf(·, x−j)

∂xkj

)
≤ bk · C.

This completes the proof.

A.7 Proof of Theorem 4
Here and henceforth, we use the notation Bp(r) = {x : ‖x‖p ≤ r} for the `p ball of radius r, where p, r > 0 (and the
ambient dimension will be determined based on the context).
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Lemma S.3 (Lemma 7 in Sadhanala et al. (2016)). Let T (r) = {θ ∈ Rn : ‖Dθ‖1 ≤ r} for a matrix D and
r > 0. Recall that ‖D‖1,∞ = maxi∈[n] ‖Di‖1 where Di is the ith column of D. Then for any r > 0, it holds that
B1(r/‖D‖1,∞) ⊆ T (r).

From Lemma S.3 and the fact that ‖D(k+1)
n,d ‖1,∞ = 2k+1d

B1(r/(2k+1d)) ⊆ T kn,d(r). (S.8)

for any r > 0, and integers d ≥ 1, k ≥ 0.
To prove Theorem 4 we will use the following result from Birge and Massart (2001), which gives a lower bound for

the risk in a normal means problem, over `p balls. We state the result in our notation.

Lemma S.4 (Proposition 5 of Birge and Massart (2001)). Assume i.i.d. observations yi ∼ N(θ0,i, σ
2), i = 1, . . . , n,

and n ≥ 2. Then the minimax risk over the `p ball Bp(rn), where 0 < p < 2, satisfies

n ·R(Bp(rn)) ≥ c ·


σ2−prpn

[
1 + log

(
σpn

rpn

)]1−p/2
if σ
√

log n ≤ rn ≤ σn1/p/
√
ρp

r2n if rn < σ
√

log n

σ2n/ρp if rn > σn1/p/
√
ρ

.

Here c > 0 is a universal constant, and ρp > 1.76 is the unique solution of ρp log ρp = 2/p.

Proof of Theorem 4. It suffices to show that the minimax optimal risk R
(
T kn,d(Cn)

)
is lower bounded by the three

terms present in the statement’s lower bound separately:

R
(
T kn,d(Cn)

)
= Ω

(
κσ2

n

)
,

R
(
T kn,d(Cn)

)
= Ω

(
σCn
n
∧ σ2

)
, (S.9)

R
(
T kn,d(Cn)

)
= Ω

((
Cn
n

) 2
2s+1

σ
4s

2s+1 ∧ σ2

)
,

where κ = nullity
(
D

(k+1)
n,d

)
= (k + 1)d. First, as the null space of D(k+1)

n,d has dimension κ, we get the first lower
bound:

inf
θ̂

sup
θ0∈T k

n,d(Cn)

1

n
E‖θ̂ − θ0‖22 ≥ inf

θ̂
sup

θ0∈null
(
D

(k+1)
n,d

) 1

n
E‖θ̂ − θ0‖22 ≥

κσ2

n
.

We get the second lower bound in (S.9) by using the `1-ball embedding

B1 (Cn/dmax) ⊂ T kn,d(Cn)

from (S.8) and then using Lemma S.4. Finally, from Theorem 4 in Sadhanala et al. (2017), it follows that

R
(
Ckn,d(Ln)

)
= Ω

((σ2

n

) 2s
2s+1

L
2

2s+1
n ∧ σ2

)
(S.10)

with additional tracking for σ2. Taking Ln = Cn/n
1−s and applying the embedding in Proposition 3 would then give

the third lower bound in (S.9). This completes the proof.

A.8 Proof of Theorem 5
We use the following shorthand for the risk of an estimator θ̂ over a class K:

Risk(θ̂) = sup
θ0∈K

1

n
E‖θ̂ − θ0‖22.

For a matrix S ∈ Rn×n let Risk(S) also denote the risk of the linear smoother θ̂ = Sy.
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Proof of Theorem 5. For brevity, denote D = D
(k+1)
n,d and let S stand for a linear smoother in the context of this proof.

The minimax linear risk for the class T kn,d(Cn) is

RL(T kn,d(Cn)) = inf
S∈Rn×n

sup
θ0∈T k

n,d(Cn)

1

n
E‖Sy − θ0‖22

= inf
S

sup
θ0∈T k

n,d(Cn)

1

n
E‖S(θ0 + ε)− θ0‖22

=
1

n
inf
S

sup
θ0∈T k

n,d(Cn)

σ2‖S‖2F + ‖(S − I)θ0‖22

where in the last line we used the assumption that εi, i ∈ [n] are i.i.d. with mean zero and variance σ2 and used the
notation ‖A‖F for the Frobenius norm of a matrix A. The infimum can be restricted to the set of linear smoothers

S = {S : null(S − I) ⊇ null(D)}

because if for a linear smoother S, if there exists η ∈ null(D) such that (S − I)η 6= 0, then the inner supremum
above will be∞, that is, its risk will be∞. If the outer infimum is over S, then the supremum can be restricted to
{θ0 ∈ row(D) : θ ∈ T kn,d(Cn)}. We continue to lower bound minimax linear risk as follows:

RL(T kn,d(Cn)) =
1

n
inf
S∈S

σ2‖S‖2F + sup
θ0∈row(D):‖Dθ0‖1≤Cn

‖(S − I)θ0‖22

=
1

n
inf
S∈S

σ2‖S‖2F + sup
z:‖z‖1≤Cn

‖(S − I)D+z‖22

=
1

n
inf
S∈S

σ2‖S‖2F + C2
n max
i∈[m]

∥∥((S − I)D+
)
i

∥∥2
2

(S.11)

≥ 1

n
inf
S∈S

σ2‖S‖2F +
C2
n

m

m∑
i=1

∥∥((S − I)D+
)
i

∥∥2
2

= inf
S∈S

σ2

n
‖S‖2F +

C2
n

mn

∥∥(S − I)D+
∥∥2
F︸ ︷︷ ︸

=:r(S)

(S.12)

In the third line, (A)i denotes the ith column of matrix A and m denotes the number of rows in D. In the fourth line,
we used the fact that the maximum of a set is at least as much as their average. In the last line — within the context of
this proof — we define the quantity r(S) which is a lower bound on the risk of a linear smoother S ∈ S.

Notice that r(·) is a quadratic in the entries of S and the constraint S ∈ S translates to linear constraints on the
entries of S. Writing the KKT conditions, after some work, we see that r(·) is minimized at

S0 = an

(
σ2L(k+1) + anI

)−1
(S.13)

where we denote an =
C2

n

m and L(k+1) = DTD (the inverse is well defined because an > 0). Further, S0 ∈ S.
Therefore,

RL(T kn,d(Cn)) ≥ r(S0). (S.14)

We simplify the expression for r(S0) now. Let λi, i ∈ [n] be the eigenvalues of L(k+1). Then the eigenvalues of S0 are

an
σ2ξi + an

, i ∈ [n]

and the non-zero squared singular values of (S0 − I)D+ are given by

σ4ξi
(σ2ξi + an)2

, κ < i ≤ n.

7



Using the fact that the squared Frobenius norm of a matrix is the sum of squares of its singular values, substituting the
above eigenvalues and singular values in (S.12), we have

r(S0) =
σ2

n

n∑
i=1

(
an

σ2ξi + an

)2

+
an
n

n∑
i=1

σ4ξi
(σ2ξi + an)2

=
1

n

n∑
i=1

σ2an
σ2ξi + an

. (S.15)

Now we upper bound the risk Risk(S0) of the linear smoother defined by S0. From (S.11), we can write

Risk(S0) =
σ2

n
‖S0‖2F +

C2
n

n
max
i∈[m]

∥∥((S0 − I)D+
)
i

∥∥2
2
.

Let D = UΣV T be the singular value decomposition of D. Also let the eigen-decomposition of S0 − I = V ΛV T.
Then using incoherence of columns of U , that is, the fact that there exists a constant c > 1 that depends only on k, d
such that U2

ij ≤ c
m for all i ∈ [m], j ∈ [n], we can write

max
i∈[m]

∥∥((S0 − I)D+
)
i

∥∥2
2

= max
i∈[m]

∥∥V ΛV TV Σ+(UT)i
∥∥2
2

= max
i∈[m]

(UT)Ti (ΛΣ+)2(UT)i

≤ c

m
tr
(
(ΛΣ+)2

)
=

c

m

n∑
i=1

σ4ξi
(σ2ξi + an)2

.

Plugging this back in the previous display and also using the fact that the squared Frobenius norm of a matrix is equal
to the sum of the squares of its eigenvalues,

Risk(S0) =
σ2

n

n∑
i=1

(
an

σ2ξi + an

)2

+
c · an
n

n∑
i=1

σ4ξi
(σ2ξi + an)2

≤ c · r(S0)

Combining this with the lower bound in (S.14), we have

r(S0) ≤ RL(T kn,d(Cn)) ≤ min
{
σ2,Risk(S0)

}
≤ min

{
σ2, c · r(S0)

}
. (S.16)

In other words, the minimax linear rate is essentially r(S0) up to a constant factor. Further, one of the estimators
ŷ = S0y, ŷ = y achieves the minimax linear rate up to a constant factor.

Now we bound r(S0). Let κ = (k + 1)d denote the nullity of D. Recall from (S.15)

r(S0) =
1

n

n∑
i=1

σ2an
σ2ξi + an

=
κσ2

n
+

1

n

n∑
i=κ+1

σ2an
σ2ξi + an

. (S.17)

Lower bounding r(S0). We give three lower bounds on r(S0). By using the fact that arithmetic mean of positive
numbers is at least as large as their harmonic mean, we have

r(S0) =
1

n

n∑
i=1

σ2an
σ2ξi + an

≥ nσ2an∑n
i=1(σ2ξi + an)

=
nσ2an

nan + σ2‖D‖2F

8



=
nσ2an

nan + σ2dn1−1/d‖D(k+1)
1d ‖2F

=
σ2an

an + σ2dn−1/d(n1/d − k − 1)
(
2k+2
k+1

)
≥ σ2an
an + σ2d4k+1

(S.18)

Now we bound in r(S0) in a second way. Let n1 be the cardinality of {i ∈ [n] : σ2ξi ≤ an}. Then

r(S0) =
1

n

n∑
i=1

σ2an
σ2ξi + an

≥ 1

n

n1∑
i=1

σ2an
an + an

=
n1σ

2

2n
.

Note that n1 = bnF (an/σ
2)c where F is the spectral distribution of (D

(k+1)
n,d )TD

(k+1)
n,d defined in Lemma S.10.

Applying Lemma S.10, we get

r(S0) ≥ σ2

2

(
F
(an
σ2

)
− 1

n

)
≥ cσ2 min

{
1, (an/σ

2)
1
2s

}
− σ2/2n

= min
{
cσ2, cσ2− 1

s a
1
2s
n − σ2/2n

}
(S.19)

In the special case s = 1/2, from Lemma S.9 we get a third bound:

r(S0) =
1

n

n∑
i=1

σ2an
σ2ξi + an

≥ c1an log
(
1 + c2/an) (S.20)

where c1, c2 constants that depend only on k, d.
From (S.17),(S.18), (S.19) and (S.20) we have the lower bound

r(S0) ≥ max

{
κσ2

n
,

σ2an
an + σ2d22k+2

, σ2 ∧ cσ2− 1
s a

1
2s
n −

σ2

2n

}
. (S.21)

and an additional lower bound of c1an log
(
1 + c2/an) in the case s = 1/2. Substituting an = C2

n/m, using the
assumption that C2

n/n ≤ 1 and treating k, d, σ as constants , we get the stated lower bound.

Upper bounding r(S0). If s < 1/2, then

r(S0) =
1

n

n∑
i=1

σ2an
σ2ξi + an

≤ κσ2

n
+

1

n

n∑
i=κ+1

σ2an
σ2ξi

=
κσ2

n
+
an
n

κ+1∑
i=1

1

ξi

≤ κσ2

n
+
an
n

(c3n)

=
κσ2

n
+ c3an (S.22)

We used Lemma S.6 to control the second term in the third line. Similarly, if s = 1/2, r(S0) ≤ κσ2/n+ c3an log n.
For the case s > 1/2, we can write

r(S0) =
1

n

n∑
i=1

σ2an
σ2ξi + an

9



≤ 1

n

n1∑
i=1

σ2an
an

+
1

n

n∑
i=n1+1

σ2an
2σ2ξi

=
n1σ

2

n
+
an
2n

n∑
i=n1+1

1

ξi

≤ cσ
2

n
+ cσ2

(an
σ2

) 1
2s

+ c
an
2n
n2s

(
n(an/σ

2)
1
2s

)1−2s
≤ cσ

2

n
+ cσ2− 1

s a
1
2s
n (S.23)

To get the fourth line, we used Lemma S.10 to bound n1 and Lemma S.6 to bound the summation.

Upper bound with the polynomial projection estimator θ̂poly. For brevity, let Π denote the matrix that projects on
to the null space of D. Note that (I −Π)D+ = D+. From bias variance decomposition similar to that in (S.11),

1

n
sup

θ0∈T k
n,d(Cn)

E
[
‖θ̂poly − θ0‖22

]
=
σ2

n
‖Π‖2F + max

i∈[m]
‖
(
(Π− I)D+

)
i
‖22

=
κσ2

n
+ max
i∈[m]

‖D+
i ‖

2
2

Then using incoherence of columns of U , that is, the fact that there exists a constant c > 1 that depends only on k, d
such that U2

ij ≤ c
m for all i ∈ [m], j ∈ [n], we can write

max
i∈[m]

‖D+
i ‖

2
2 = max

i∈[m]

∥∥V Σ+(UT)i
∥∥2
2

= max
i∈[m]

(UT)Ti (Σ+)2(UT)i

≤ c

m
tr
(
(Σ+)2

)
=

c

m

n∑
i=κ+1

1

ξi

Plugging this back in the above display and using the bound on
∑n
i=κ+1

1
ξi

from Lemma S.6, we get the desired result.

Upper bound with the projection estimator (34) when s > 1/2. From (S.11), for the projection estimator θ̂ = SQy
in (34),

Risk(θ̂) =
σ2

n
|Q|+ C2

n

n
max
i∈[m]

∥∥((SQ − I)D+
)
i

∥∥2
2
. (S.24)

Set Q = [τ ]d for a τ to be chosen later from (k + 2, N ]. Also write SQ − I = V ΛQV
T. Again using incoherence of

columns of U , we can write

max
i∈[m]

∥∥((SQ − I)D+
)
i

∥∥2
2

= max
i∈[m]

∥∥V ΛQV
TV Σ+(UT)i

∥∥2
2

= max
i∈[m]

(UT)Ti (ΛQΣ+)2(UT)i

≤ c

m
tr
(
(ΛQΣ+)2

)
=

c

m

∑
i∈[N ]d\Q

1

ξi

The summation in the last line can be bound using Lemma S.6 (recall s > 1/2 here):∑
i∈[N ]d\Q

1

ξi
≤

∑
‖(i−k−2)+‖2≥τ−k−2

1

ξi
≤ cn(n/(τ − k − 2)d)2s−1

10



Tracing this back to (S.24),

Risk(θ̂) ≤ σ2

n
τd +

cC2
n

m
· (n/(τ − k − 2)d)2s−1

Minimize this bound by setting τ such that τd � (Cn/σ)
1
sn1−

1
2s to get the desired bound.

Remark 1. In Theorem 5, in the case s ≤ 1/2, the lower bound may also be obtained by embedding the `1-ball
B1(Cn/(2

k+1d)) into T kn,d(Cn).

A.9 Proof of Theorem 6
Proof of upper bound. Like in the proof of minimax linear rates for KTV class in Theorem 5, for the projection
estimator θ̂ = SQy where SQ = VQV

T
Q , we can derive

1

n
sup

θ0∈Wk+1
n,d (Bn)

E
[
‖θ̂ − θ0‖22

]
=
σ2

n
|Q|+ 1

n
sup

θ0∈Wk+1
n,d (Bn)

‖(I − SQ)θ0‖22.

Denote D = D
(k+1)
n,d for brevity. Set Q = [τ ]d, where τ ∈ (k + 2, N ] is an integer (recall N = n1/d) and analyze the

maximum of the second term:

sup
θ0:‖Dθ0‖2≤Bn

1

n
‖(I − Sq)θ0‖22 = sup

z:‖z‖2≤Cn

1

n
‖(I − Sq)D†z‖22

=
B2
n

n
σ2
max

(
(I − Sq)D†

)
≤ B2

n

n

1

4k+1 sin2k+2(π(τ − k − 2)/(2N))

≤ B2
n

n

N2k+2

(π(τ − k − 2))2k+2
.

Here we denote by σmax(A) the maximum singular value of a matrix A. The last inequality above used the inequality
sin(x) ≥ x/2 for x ∈ [0, π/2]. The earlier inequality used that σ2

max((I − SQ)D†) is the reciprocal of the smallest
eigenvalue ρQ of M = DTD with index in [N ]d \Q. That is,

ρQ = ρτ+1,1,...,1 ≥
(
4 sin2(π(τ − k − 2)/(2N))

)k+1
,

where the last inequality is due to the relation in (S.37). Hence, we have established

sup
θ0:‖Dθ0‖2≤Bn

1

n
E
[
‖θ̂ − θ0‖22

]
≤ σ2

n
τd +

B2
n

n

N2k+2

(π(τ − k − 2))2k+2
.

Choosing τ to balance the two terms on the right-hand side above results in τd � (k + 2)d +
(
B2
nn

2s/σ2
) 1

2s+1 . Also,
in the edge case where Q = [N ]d, the risk is σ2. Plugging this choice of τ gives the upper bound result.

Proof of lower bound. Similar to argument in the proof of Theorem 4, the nullity of D(k+1)
n,d implies the lower bound

R(Wk+1
n,d (Cn)) = Ω

(κσ2

n

)
. (S.25)

The Holder ball embedding
Wk+1
n,d (Cn) ⊇ Ckn,d(cCnns−

1
2 )

implies that

R(Wk+1
n,d (Cn)) ≥ R

(
Ckn,d(cCnns−

1
2 )
)
&

(
C2
n

n

) 1
2s+1

σ
4s

2s+1 ∧ σ2,

where the second inequality follows from (S.10). Putting these two bounds together, we get the desired lower bound.
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B Estimation theory for graph trend filtering on grids
We recall the GTF operator from Wang et al. (2016) for convenience. Let G(V,E) be a graph with n vertices and m
edges (u1, v1), . . . , (um, vm) ∈ [n]× [n]. Assume that ui < vi for i ∈ [m] in the edges here for notational convenience.
Let D ∈ Rm×n be the incidence matrix of G satisfying

(Dx)j = xuj − xvj for all x ∈ Rn

for all edges (uj , vj) for j ∈ [m]. The graph Laplacian is L = DTD The GTF operators of all orders are defined by

S
(1)
n,d = D, S

(2)
n,d = L,

S
(2k+1)
n,d = DLk, S

(2k)
n,d = Lk for k ≥ 0, k ∈ Z. (S.26)

B.1 Upper bounds on estimation risk
Wang et al. (2016) used Theorem 2 (their Theorem 6) in order to derive error rates for GTF on 2d grids already; see
their Corollary 8. Sadhanala et al. (2017) refine this result using a tighter upper bound for the partial sum of inverse
eigenvalues. Here, we give a more general result that applies to not just 2d grids, but all d ≥ 2 and k ≥ 0. We further
show that these rates are optimal by deriving a matching lower bound. Recall the abbreviation s = (k + 1)/d.

Theorem S.1. Assume that d ≥ 1 and k ≥ 0. Denote Cn = ‖S(k+1)
n,d θ0‖1. Then GTF defined by the estimator in (30)

with D = S
(k+1)
n,d in (S.26) satisfies

1

n
‖θ̂ − θ0‖22 = OP

(
1

n
+
λ

n
Cn

)
with

λ �


√

log n s < 1/2

log n s = 1/2

(log n)
1

2s+1
(
n
Cn

) 2s−1
2s+1 s > 1/2.

With canonical scaling of Cn, we see the following error bound.

Corollary 1. With canonical scaling Cn = C∗n = n1−s, the GTF estimator with λ scaling as in Theorem S.1 satisfies

sup
θ0∈Sk

n,d(Cn)

1

n
‖θ̂ − θ0‖22 =


OP
(
n−s
√

log n
)

s < 1/2

OP (n−s log n) s = 1/2

OP

(
n−

2s
2s+1 (log n)

1
2s+1

)
s > 1/2.

Remarks following Theorem 3 for KTF apply for GTF as well. The proof is in Appendix B.4.

B.2 Lower bounds on estimation risk
Similar to the lower bound in Theorem 4 for KTV class, we give a bound for the graph total variation (GTV) class

Skn,d(Cn) = {θ ∈ Rn : ‖S(k+1)
n,d θ‖1 ≤ Cn}. (S.27)

Due to the lower order discrete derivatives on the boundary of the grid Zn,d, the GTV class Skn,d(Cn) cannot contain
the discrete Holder class with appropriate scaling Ckn,d(Cnns−1); see Lemma 4 in Sadhanala et al. (2017). However, by
an alternative route Sadhanala et al. (2017) show a lower bound for Skn,d(Cn) that matches with the lower bound for the
Holder class Ckn,d(Cnns−1). We further tighten their result by embedding an `1 ball of appropriate size.

Theorem S.2. For any integers k ≥ 0, d ≥ 1, the minimax estimation error for the GTV class defined in (S.27) satisfies

R
(
Skn,d(Cn)

)
= Ω

(
σ2

n
+
σCn
n

+

(
Cn
n

) 2
2s+1

σ
4s

2s+1 ∧ σ2

)
.
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Proof of Theorem S.2. Similar to the proof of Theorem 4, it is sufficient to show three lower bounds separately. We get
the first two lower bounds just as in the proof of Theorem 4 by using the fact that nullity

(
S
(k+1)
n,d

)
= 1 and the `1-ball

embedding
B1(Cn/(2

k+1d)) ⊆ Skn,d(Cn)

from Lemma S.3 and the fact that ‖S(k+1)
n,d ‖1,∞ ≤ 2k+1d. The third term is from Theorem 5 in Sadhanala et al.

(2017).

B.3 Minimax rates for linear smoothers
The minimax linear rate analysis for GTV class is very similar to that for KTV class. So we simply state the result and
skip the proof.

Theorem S.3. The minimax linear risk over the GTV class in (S.27) satisfies, for any sequence Cn ≤
√
n,

RL
(
Skn,d(Cn)

)
=


Ω(1/n+ C2

n/n) if s < 1/2,

Ω
(
1/n+ C2

n/n log(1 + n/C2
n)
)

if s = 1/2,

Ω
(
1/n+ (C2

n/n)
1
2s

)
if s > 1/2.

(S.28)

This is achieved in rate by the projection estimator in (34), by setting Q = [τ ]d for τd � (Cnn
s−1/2)1/s, in the case

s > 1/2. When s < 1/2, the simple mean estimator, θ̂mean = ȳ1, achieves the rate in (S.28). When s = 1/2, this
estimator achieves the rate in (S.28) up to a log factor. Lastly, if C2

n = O(nα) for α < 1, and still s = 1/2, then the
mean estimator achieves the rate in (S.28) without the additional log factor.

B.4 Proof of Theorem S.1
For d = 2, it is shown in the proof of Corollary 8 in Wang et al. (2016) that the GTF operator S(k+1)

n,d satisfies the
incoherence property, as defined in Theorem 2, with a constant µ = 4 when k is even and µ = 2 when k is odd. Here
we extend this incoherence property for d > 2 using Lemma S.1. We treat the cases where k is odd and even separately.

If k is odd we can extend the argument from Corollary 8 in Wang et al. (2016) in a straightforward manner. The
GTF operator is S(k+1)

n,d = L(k+1)/2 where L is the Laplacian of the d-dimensional grid graph. Denoting the Laplacian
of the chain graph of length N by L1d, we note that L is given by

L = L1d ⊗ I ⊗ I + I ⊗ L1d ⊗ I + I ⊗ I ⊗ L1d

for d = 3 and
L = L1d ⊗ I · · · ⊗ I + I ⊗ L1d · · · ⊗ I + · · ·+ I ⊗ . . . I ⊗ L1d

for general d where each term in the summation is a Kronecker product of d matrices. Let αi, ui, i ∈ [N ] be the
eigenvalues and eigenvectors of L1d. As shown in Wang et al. (2016), in 1d, we have the incoherence property
‖ui‖∞ ≤

√
2/N for all i ∈ [N ]. The eigenvalues of L are

∑d
j=1 αij and the corresponding eigenvectors are

ui1 ⊗ · · · ⊗ uid for i1, . . . , id ∈ [N ]. Clearly, incoherence holds for the eigenvectors of L with constant µ = 2d/2.
If k is even, then the left singular vectors of S(k+1)

n,d are the same as those of S(1)
n,d. We know that both the left and

right singular vectors of D(1)
1d satisfy the incoherence property with constant µ =

√
2 (see the proof of Corollary 7 in

Wang et al. (2016)). Setting D = D
(1)
1d in Lemma S.1, we see that the left singular vectors of S(1)

n,d and hence those of
S
(k+1)
n,d satisfy incoherence property with constant 2d/2. Therefore, for all integers k ≥ 0, the left singular vectors of
S
(k+1)
n,d are incoherent with constant 2d/2.

From the incoherence property and Theorem 2, the GTF estimator θ̂, satisfies

1

n
‖θ̂ − θ0‖22 = OP

(
1

n
+
|I|
n

+
µ

n

√√√√ log n

n

∑
i∈[N ]d\(I∪{1}d)

1

ρ2i
· ‖∆θ0‖1

)
, (S.29)

where ρi, i ∈ [N ]d are the eigenvalues S(k+1)
n,d

T
S
(k+1)
n,d and µ = 2d/2.

13



Consider the set I = {i ∈ [N ]d : ‖i− 1‖2 < r} \ {1}d for an r ∈ [1,
√
dN ] chosen later. Lemma S.5 gives the

key calculation where it is shown that for large enough n,

∑
‖i−1‖≥r

1

ρ2i
=

∑
‖i−1‖≥r

1

λk+1
i

≤ c


n s < 1/2

n log(2
√
dN/r) s = 1/2

n(n/rd)2s−1 s > 1/2

where λi, i ∈ [N ]d are eigenvalues of the Laplacian L and c > 0 is a constant that depends only on k, d .
For s ≤ 1/2, to minimize the upper bound in (S.29), set r = 1 so that I is empty and apply the above inequality.

This gives the desired bound. Now consider s > 1/2. Note that |I| ≤ rd because I ⊆ [r]d. Therefore (S.29) reduces to

1

n
‖θ̂ − θ0‖22 = OP

(rd
n

+
µ

n

√
log n(n/rd)2s−1‖∆θ0‖1

)
(S.30)

To minimize the upper bound in (S.30) balance

rd with
Cn√
n

√
n(n/rd)2s−1 log n.

This leads us to take
rd � (Cn

√
log n)

2
2s+1n

2s−1
2s+1

and plugging this in (S.30) gives the desired bound for s > 1/2. This completes the proof.

C Technical lemmas
Lemma S.5. Consider the eigenvalues {λi : i = (i1, · · · , id) ∈ [N ]d} of the d-dimensional grid graph Laplacian with
n = Nd nodes. Let k be a non-negative integer and r0 ∈ [1,

√
dN ]. Then,

∑
i∈[N ]d:‖i−1‖22≥r20

1

λki
≤ c


n 2k < d

n log(2
√
dN/r0) 2k = d

N2krd−2k0 2k > d

for a constant c > 0 that depends on k, d but not on N, r0.

Proof of Lemma S.5. Let I denote the summation on the left. Then

I =
∑

i∈[N ]d:‖i−1‖2≥r0

1

λki
=

∑
‖i−1‖2≥r0

( d∑
j=1

4 sin2 π(ij − 1)

2N

)−k

≤
∑

‖i−1‖2≥r0

( d∑
j=1

π2(ij − 1)2

4N2

)−k
= cN2k

∑
‖i−1‖2≥r0

( d∑
j=1

(ij − 1)2
)−k

≤ cN2k
∑

i∈{0,1,..,N−1}d:‖i‖2≥r0

‖i‖−2k2 (S.31)

In the second line, we used the fact that sinx ≥ x/2 for x ∈ [0, π/2].

Case r0 ≥ 2
√
d. In the last expression, upper bound ‖i‖−2k2 with the integral of f(x) = ‖x‖−2k2 , f : Rd → R over

the unit length cube whose top right corner is at i. Note that, the norm of any point in this cube is at least ‖i− 1‖2 ≥
‖i‖2 − ‖1‖2 = ‖i‖2 −

√
d ≥ r0 −

√
d ≥ r0/2. Therefore, we can continue to bound

I ≤ cN2k

∫
r0/2≤‖x‖2≤

√
dN

‖x‖−2k2 dx
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≤ cN2k

∫
r0/2≤r≤

√
dN

(r2)−krd−1 dr

The last line is obtained by changing to polar coordinates and integrating out the angles. Recall that the constants c may
change from line to line and they may depend on k, d, but not on N, r0.
If d = 2k, then the integral

I ≤ cN2k log(2
√
dN/r0) = cn log(2

√
dN/r0).

If 2k < d, then
I ≤ cN2k

(
(N
√
d)d−2k − (r0/2)d−2k

)
≤ cNd.

If 2k > d, then
I ≤ cN2k

(
(r0/2)d−2k − (N

√
d)d−2k

)
.

Treating d, k as constants, we write
I ≤ cN2krd−2k0 .

Case r0 < 2
√
d. Continuing from (S.31), write

I ≤ cN2k
∑

i∈{0,1,..,N−1}d:‖i‖2∈[r0,2
√
d)

‖i‖−2k2 + cN2k
∑

i∈{0,1,..,N−1}d:‖i‖2≥2
√
d

‖i‖−2k2 (S.32)

From the previous case, the second summation can be upper bound with cn if 2k < d, cn log n if 2k = d and cN2k

if 2k > d. In the first summation (in the above display), the number of entries i is at most (2
√
d)d and each entry is

at most r−2k0 . Therefore the first term is at most cN2k(2
√
d)dr−2k0 . Putting the two sums together, we can verify the

stated bounds.

Following lemma provides a result analogous to Lemma S.5 for KTF.

Lemma S.6. Let {ξi : i = (i1, · · · , id) ∈ [N ]d} be the eigenvalues of D(k+1)
n,d

T
D

(k+1)
n,d and suppose r0 ∈ [1,

√
dN ].

Then, ∑
i∈[N ]d\[k+2]d

1

ξ2i
≤ c

{
n 2(k + 1) < d

n log n 2(k + 1) = d.

In the case 2k + 2 > d, ∑
i∈[N ]d:‖(i−k−2)+‖2≥r0

1

ξ2i
≤ cN2k+2rd−2k−20

Here c > 0 is a constant that depends on k, d but not on N, r0.

Proof. Using Lemma S.7, we can write∑
i∈[N ]d:‖(i−k−2)+‖2≥r0

1

ξ2i
≤ d2k

∑
i∈[N ]d:‖(i−k−2)+‖2≥r0

1

λ2k+2
i−k−1

≤ d2k
∑

i∈[N ]d:‖i−1‖2≥r0

1

λ2k+2
i

. (S.33)

Applying Lemma S.5 directly gives the desired result in the case 2k + 2 > d. In the case 2k + 2 ≤ d, we get the bound
by setting r0 = 1 in (S.33) and then applying Lemma S.5.

Lemma S.7. Let {ξi : i = (i1, · · · , id) ∈ [N ]d} be the eigenvalues of D(k+1)
n,d

T
D

(k+1)
n,d for k ≥ 0, d ≥ 1, N ≥ 1, n =

Nd. Let αi, i ∈ [N ] be the eigenvalues of L, the Laplacian of chain graph of lengthN . Let λi1,...,id =
∑d
j=1 αij , i ≤

N elementwise with the convention that α` = 0 for ` ≤ 0. Then

ξi ≥ d−kλk+1
i−k−1 for i ∈ [N ]d.

Proof. Abbreviate D = D
(k+1)
N,1 , and let G be the kth order GTF operator defined over a 1d chain of length N . Also let

N ′ = N − k − 1, and k′ = b(k + 1)/2c. Let

• β`, ` ∈ [N ′] be the eigenvalues of DDT

• γ`, ` ∈ [N ′′] be the eigenvalues of GGT where N ′′ = N − 1{k is even}
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GGT and GTG should have the same nonzero eigenvalues. From the definition of G, GTG = Lk+1. The first
eigenvalue of L is 0 and the rest are nonzero. Putting these facts together, we see that

γ` = αk+1
`+N−N ′′ and αk+1

` ≤ γ` for ` ∈ [N ′′]. (S.34)

Removing the top k′ and bottom k′ rows of G yields D, i.e.,

D = PG, where P =
[

0N ′×k′ IN ′ 0N ′×k′
]
.

As DDT = PGGTPT and PPT = IN ′ , Cauchy interlacing theorem (Lemma S.8) tells us that

γi ≤ βi ≤ γi+N ′′−N ′ , for i ∈ [N ′]. (S.35)

Thanks to the Kronecker sum structure, the eigenvalues of (D
(k+1)
n,d )TD

(k+1)
n,d are

ξi1,...,id =

d∑
j=1

ρij , i ∈ [N ]d,

where ρ1, . . . , ρN denote the eigenvalues of DTD, i.e., ρ1 = · · · = ρk+1 = 0 and ρ`+k+1 = β`` ∈ [N ′]. Similarly, we
can write the eigenvalues of the Laplacian of the d-dimensional grid graph as

λi1,...,id =

d∑
j=1

αij , i ∈ [N ]d.

For arbitrary i ∈ [N ]d, we can write

ξi1,...,id =

d∑
j=1

βij−k−1 ≥
d∑
j=1

γij−k−1 ≥
d∑
j=1

αk+1
ij−k−1 ≥ d

−kλk+1
i1−k−1,...,id−k−1,

with the convention α` = β` = γ` = 0 for ` ≤ 0. The first inequality is due to (S.35), the second is due to (S.34),
and the third is due to a simple application of Jensen’s inequality: ( 1

d

∑d
j=1 ai)

k ≤ 1
d

∑d
j=1 a

k
i if k ≥ 1 and a ≥ 0

elementwise.

Lemma S.8 (Cauchy Interlacing theorem). Let A be an n × n symmetric matrix, P ∈ Rm×n be an orthogonal
projection matrix (satisfying PPT = Im) with m ≤ n and define B = PAPT. Let α1 ≤ α2 ≤ · · · ≤ αn be the
eigenvalues of A and β1 ≤ β2 ≤ · · · ≤ βm be the eigenvalues of B. Then

αi ≤ βi ≤ αi+n−m, for i ∈ [m].

Lemma S.9. Let {ξi : i = (i1, · · · , id) ∈ [N ]d} be the eigenvalues of D(k+1)
n,d

T
D

(k+1)
n,d for k ≥ 0, d ≥ 1, N ≥ 1, n =

Nd. Suppose s = 1/2 and a > 0. Then∑
i∈[N ]d

1

ξi + a
≥ cn log

(
1 + π2k+2a−1

)
for a constant c that depends only on k, d.

Proof of Lemma S.9. From (S.37) and the inequality sinx ≤ x for x ≥ 0, for any i ∈ [N ]d,

ξi =

d∑
j=1

ρij ≤
d∑
j=1

4k+1 sin2k+2 π(ij − 1)

2N
≤ π2k+2n−2s‖i− 1‖2k+2

2k+2 ≤ π
2k+2n−2s‖i− 1‖2k+2

2 .

With this inequality, ∑
i∈[N ]d

1

ξi + a
≥
∑
i∈[N ]d

1

π2k+2n−2s‖i− 1‖2k+2
2 + a
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≥ c
∫ N

r=0

1

π2k+2n−2sr2k+2 + a
rd−1 dr. (S.36)

In the second inequality is obtained as follows. Consider axis-parallel unit cubes with corners located at integer
coordinates. Let Ai ⊂ Rd be the cube with its farthest corner from origin located at i, for i ∈ [N ]d. Clearly,

1

π2k+2n−2s‖i− 1‖2k+2
2 + a

≥
∫
Ai

1

π2k+2n−2s‖x‖2k+2
2 + a

dx.

Next observe that the set {x ∈ Rd : ‖x‖2 ≤ N, x ≥ 0} is contained in the cube {x ∈ Rd : ‖x‖∞ ≤ N, x ≥ 0} The
former set is the non-negative orthant of the `2 ball of radius N in Rd. So, for radially symmetric functions f , integral
of f over this set is 2−d times its integral over the `2 ball. This justifies (S.36) after a change to polar coordinates. In
the integral (S.36), noting that s = 1/2, 2k + 2 = d, put u = rd to get∑

i∈[N ]d

1

ξi + a
≥ c

∫ n

0

1

π2k+2u/n+ a
du = cn log

(
1 + π2k+2a−1

)
.

Lemma S.10. Let {ξi : i = (i1, · · · , id) ∈ [N ]d} be the eigenvalues of D(k+1)
n,d

T
D

(k+1)
n,d for k ≥ 0, d ≥ 1, N ≥ 1, n =

Nd. Let αi, i ∈ [N ] be the eigenvalues of L, the Laplacian of chain graph of length N . Define

F (t) =
1

n

∑
i∈[N ]d

1{λi ≤ t}, for t ∈ [0, λn].

Then there exist constants c1, c2, c3 > 0 independent of n, t such that

c1t
d

2k+2 ≤ F (t) ≤ c2 + c3t
d

2k+2

for all t ∈ [0, λn].

Proof of Lemma S.10. Using the notation in the proof of Lemma S.6,

λi1,...,id = ρi1 + · · ·+ ρid , for (i1, . . . , id) ∈ [N ]d

where ρ` = β`−k−1, ` ∈ [N ] with the convention that β` = 0 for ` ≤ 0. From (S.35), (S.34) and the fact that the
eigenvalues of chain Laplacian are given by 4 sin2 π(`−1)

2N for ` ∈ [N ], we have(
4 sin2 π(`− k − 2)+

2N

)k+1

≤ ρi ≤
(

4 sin2 π(`− 1)

2N

)k+1

, for ` ∈ [N ] (S.37)

where (x)+ = max{x, 0} for x ∈ R. The upper bound can be argued as follows.

nF (t) =
∑
i∈[N ]d

1
{
λi1,...,id ≤ t

}

=
∑
i∈[N ]d

1
{ d∑
j=1

ρij ≤ t
}

≤
∑
i∈[N ]d

1
{ d∑
j=1

4k+1 sin2k+2 π(ij − k − 2)+
2N

≤ t
}

≤
∑
i∈[N ]d

1
{ d∑
j=1

(π
2

)2k+2

(ij − k − 2)2k+2
+ ≤ tN2k+2

}
In the third line, we use (S.37) and in the fourth line, we use the fact that sinx ≥ x/2 for x ∈ [0, π/2]. Observe that

(π
2

)2k+2 d∑
j=1

(ij − k − 2)2k+2
+ ≤ tN2k+2 ⇒ ‖i‖∞ ≤ k + 2 +

2

π
Nt

1
2k+2 .
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Applying this fact to the previous bound on nF (t),

nF (t) ≤
∑
i∈[N ]d

1
{
‖i‖∞ ≤ k + 2 +

2

π
Nt

1
2k+2

}
≤
(
k + 2 +

2

π
Nt

1
2k+2

)d
≤ 2d−1(k + 2)d + 22d−1π−dnt

d
2k+2 .

where in the last inequality we used the fact that (a+ b)d ≤ 2d−1(ad + bd) for a, b ≥ 0, d ≥ 1.
The lower bound can be derived as follows. Certainly, F (t) ≥ F (0) = κ/n for t ≥ 0. We can write

nF (t) =
∑
i∈[N ]d

1
{
λi1,...,id ≤ t

}
=
∑
i∈[N ]d

1
{ d∑
j=1

ρij ≤ t
}

=
∑
i∈[N ]d

1
{ d∑
j=1

4k+1 sin2k+2 π(ij − 1)

2N
≤ t
}

≥
∑
i∈[N ]d

1
{ d∑
j=1

π2k+2(ij − 1)2k+2 ≤ tN2k+2
}

=
∑
i∈[N ]d

1
{ d∑
j=1

‖i− 1‖2k+2 ≤ r
}

where r = 1
πNt

1
2k+2 . In the third line, we used (S.37) and in the fourth line, we used the fact that sinx ≤ x for x ≥ 0.

Note that, we can inscribe a cube {i : ‖i− 1‖∞ ≤ rd
−1

2k+2 } in the `2k+2 body {i : ‖i− 1‖2k+2 ≤ r} and the cube
contains

(
1 + brd

−1
2k+2 c

)d
lattice points in [N ]d. Therefore, continuing to bound from the previous display,

nF (t) ≥
(
1 + b 1

π
d
−1

2k+2Nt
1

2k+2 c
)d ≥ 1

πd
d
−d

2k+2nt
d

2k+2 .

where in the last inequality we used the fact (1 + bxc)d ≥ xd for x ≥ 0.

D Fast algorithm for degrees of freedom
From (16), given a KTF estimate θ̂, nullity(D−A) is an unbiased estimate of degrees of freedom of KTF where A
denotes the set of rows r in D for which (Dθ̂)r 6= 0. We give an algorithm to compute nullity(D−A) in O(ndk) time.
This is described in Algorithm S.1, with Algorithm S.2 describing its core rubroutines. The notation we use is as
follows: N ′ = N − k − 1, and w ∈ Rk+2 is the order (k + 1) difference vector.

D.1 Time complexity and correctness of the algorithm

Let A denote the set of rows r in D for which (Dθ̂)r 6= 0. Denote the null space of D−A with N .
In step 3 of DEGREES-OF-FREEDOM, we find line segments on the lattice where θ is a kth degree polynomial.

In a bit more detail, for each straight line in the lattice between opposing faces, we find segments along the line
where θ is a kth degree polynomial. We call these line segments (polynomial) pieces in the algorithm. In 2d, MAKE-
POLYNOMIAL-PIECES is called on rows and columns separately, and a piece is a part of a row or a column. An
important characterization of the null space N is the following:

A θ ∈ N iff it is a kth degree polynomial on all the pieces found in step 3.

If a piece has fewer than k + 2 elements, then any θ is trivially a kth degree polynomial on the piece. Otherwise,
k + 1 values on the piece determine a polynomial on the piece.
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Algorithm S.1 DEGREES-OF-FREEDOM(θ, k)

Input: fitted values θ ∈ Rn, trend filtering order k ≥ 0
Output: estimate of degrees of freedom

1. struct Piece: set = false, knowns = 0, start, end ∈ [N ]d

2. pieces : Piece[], pieces-containing[i]: Piece[], set[i] : bool for i ∈ [N ]d

3. for d′ ∈ [d] for i′ ∈ [N ]d−1:
(a) i←i′ with an extra 1 inserted before d′th entry:

ij=i
′
j for j<d′, ij=1 for j=d′, ij=i′j−1 for j>d′

(b) MAKE-POLYNOMIAL-PIECES(θ, i, d′)

4. df = 0
5. for p in pieces:

(a) if p.set : continue
(b) df += max{0,min{p.length, k+1} − p.knowns}
(c) SPREAD(p)

6. return df

We pretend to build a vector η ∈ N by making sure that η is a kth degree polynomial on the pieces. In step 5,
we pretend to set the values of η in a piece p. The number of new entries in η required to determine a polynomial on
piece p is shown in 5(b). Once the new entries are picked arbitrarily, all the values on the piece are determined via
the constraints in D−Aη = 0. Then we propagate the values from this piece to other adjoining pieces in a depth-first
fashion. By the end of the procedure, df accumulates the total number of free parameters that we can use to build such
a η. The dimension of N is equal to the number of free parameters in the algorithm.

Time complexity. It takes O(nd(k + 1)) time to make the polynomial pieces in line 3 of DEGREES-OF-FREEDOM.
The number of pieces is at most nd(k + 1). Therefore the for loop in line 5 is run at most as many times. SPREAD
is called on a piece exactly once and SPREAD-VERTEX is called on a node exactly once. A node is contained in a
maximum of (k + 2)d pieces. Therefore, the total time complexity is O(nd(k + 2)).

Correctness. Suppose the number of free parameters returned by the algorithm is f . Given the values at the f free
nodes F ⊂ [n], the values are determined at all n nodes. Further this mapping from Rf 7→ Rn is linear. Therefore there
exists a matrix C with size n× f such that Cb ∈ N for any b ∈ Rf . Further, (Cb)F is a permutation of b, because the
values at free nodes are not modified by C. Therefore, there are f rows in C corresponding to the free nodes F , which
when vertically stacked together form a permutation of f × f identity matrix. Therefore, the column span of C has
dimension f . Hence f ≤ dim(N ). Conversely, consider any η ∈ N . Given the entries b of η at the locations of free
parameters, then the rest of the entries of η are determined by η = Cb. Therefore η must lie in the column span of C.
Therefore f = dim(N ).

E More details on optimization algorithms
Generic quadratic programming on the dual. Recall that KTF solves the following convex optimization problem:

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖Dθ‖1. (S.38)

with D = D
(k+1)
n,d . The corresponding Lagrange dual problem is

max
u
− 1

2
uDDTu+ yTDTu

subject to − λ ≤ u ≤ λ.
(S.39)

Note that the dual problem is a standard quadratic program (QP) and can be solved using the interior point method
(IPM) to high precision. Then the primal solution can be constructed using θ̂ = y −DTu∗ using the optimal solution
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Algorithm S.2 Subroutines used in Algorithm S.1
SPREAD-VERTEX(i)

for piece q in pieces-containing[i] :
1. if q.set continue
2. q.knowns++
3. if q.knowns>k : SPREAD(q)

SPREAD(p : Piece)
p.set = true

for vertex i on the line [p.start, p.end]:
1. if set[i] : continue
2. set[i]← true
3. SPREAD-VERTEX(i)

MAKE-POLYNOMIAL-PIECES(θ, i ∈ [N ]d, d′ ∈ [d]) makes polynomial pieces on the line containing i along axis d′

1. aj ← θ[i with id′ = j] for j ∈ [N ]
2. while j ≤ N

(a) start = j, end = j
(b) while (j≤N ′ and 〈w, a[j:j+k+1]〉=0)

j++
(c) if j 6= start: end← j+k
(d) Piece p(i with id′= start, i with id′ = end)
(e) for j′ in [start, end]: pieces-containing[i with id′ = j′].add(p)
(f) pieces.add(p)

u∗. In practice, IPM takes only a few iterations to converge,1 but each iteration involves solving a linear system. This
linear system is sparse since D is sparse — it has only O(dkn) non-zero elements. However, the condition number
of the linear system grows as the weights on the barrier function increase, which makes it difficult to exploit the
sparsity using methods such as preconditioned conjugates gradient method. On the other hand, direct solvers such as
Gaussian elimination and Cholesky decomposition can take up to O(n3). Sometimes this can be improved by exploiting
the banded structure of the linear system, we will describe a particular version of the interior point method using
logarithmic-barrier function.

Primal-dual interior point method. The primal-dual version of the interior point solver proposed by (Kim et al.,
2009) for `1 trend filtering can be straightforwardly applied to any generalized lasso problem, including KTF. The
main idea is to trace a “central path” using Newton’s method with an increasing weights t on the logarithmic barrier
functions. The computation is dominated by computing the search direction of the Newton step, which boils down to
solving the following system of linear equationsDDT I −I

I J1 0
−I 0 J2

∆u
∆µ1

∆µ2

 = −

DDTu−Dy + µ1 − µ2

f1 + (1/t)µ−11

f2 + (1/t)µ−12

 (S.40)

where µ1, µ2 ∈ Rm are the dual variables of the dual problem (S.39), f1 = u − λ1, f2 = −u − λ1, Ji =
diagµi

−1diag(fi) are diagonal matrices and µ−1i denotes entrywise inversion. Following the derivation of (Kim
et al., 2009), we can further eliminate ∆µ1 and ∆µ2 and solve a linear system of the form

(DDT − J−11 J−12 )∆u = −(DDTu−Dy − (1/t)f−11 + (1/t)f−12 ). (S.41)

and then construct the remainder of the solutions using

∆µ1 = −(µ1 + (1/t)f−11 + J−11 ∆u),

1In theory it could take up to O(n1/2) iterations to converge.
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∆µ2 = −(µ2 + (1/t)f−12 − J−12 ∆u).

Unlike in the trend filtering problems in 1D where (S.41) is a banded linear system with a bandwidth at most 2k + 3, in
a d-dimensional grid, the linear system is the following:

(
D1dD

T
1d

)
⊗ I ⊗ ...⊗ I, D1d ⊗DT

1d ⊗ I ⊗ ...⊗ I, · · · , D1d ⊗ I ⊗ ...⊗ I ⊗DT
1d,

DT
1d ⊗D1d ⊗ I ⊗ ...⊗ I, I ⊗

(
D1dD

T
1d

)
⊗ I ⊗ ...⊗ I, · · · , I ⊗D1d ⊗ I ⊗ ...⊗ I ⊗DT

1d

...
...

. . .
...

DT
1d ⊗ I ⊗ ...⊗ I ⊗D1d I ⊗DT

1d ⊗ I ⊗ ...⊗ I ⊗D1d · · · , I ⊗ ...⊗ I ⊗
(
D1dD

T
1d

)
− J−1

1 J−1
2

where D1d = D
(k+1)
N,1 . This is still sparse, structured, but the bandedness is on the order of O(n1−1/d + k2). Moreover,

the above matrix is not full rank, and the condition number of the linear system blows up as the dual variables µ1, µ2

converge to 0 with t→∞.

Proximal Dykstra’s algorithm. Proximal Dykstra’s algorithm is an operator-splitting method for solving problems
of the form

minimize
θ∈Rn

1

2
‖y − θ‖22 + r1(θ) + r2(θ) + ...+ rd(θ) (S.42)

where r1, ..., rd are convex but possibly non-smooth functions. We can clearly see that the regularizer in KTF
decomposes into this form with

ri(θ) =
∑

x∈Zn,d

|(∆xk+1
j

θ)(x)|

in the notation of Section 1.2. The proximal Dykstra algorithm (see, e.g., Tibshirani, 2017) initializes θ(0) =
y, z(−d+1) = ... = z(0) = 0 and then iteratively applies the following update rule for t = 1, 2, 3, ...:

θ(t) = proxrt mod d+1
(θ(t−1) + z(t−d))

z(t) = θ(t−1) + z(t−d) − θ(t).

where · mod · is the modulo operator, and the proximal operator

proxr(u) = argmin
θ

1

2
‖u− θ‖2 + r(θ).

Note that this is equivalent to a cyclic block coordinate descent in the dual.
For KTF, each proximal problem can be parallelized (Barbero and Sra, 2018). Specifically, on a d-dim regular

grid, the proximal operator of ri further splits into solving O(n1−1/d) 1D-trend filters of size n1/d in parallel. Each
subproblem can be solved efficiently in O(n1.5/d) time with the primal-dual interior point method for k ≥ 1 (Tibshirani,
2014) and in linear time when k = 0 using dynamic programming (Johnson, 2013).

Douglas-Rachford splitting. Another operator-splitting method for solving KTF is through the Douglas-Rachford
(DR) algorithm (Eckstein and Bertsekas, 1992). For simplicity, we will focus our discussion on the case of 2D grids.
The DR algorithm generically solves the following unconstrained problem:

minimize
θ

f(θ) + g(θ) (S.43)

for convex functions f, g. The update rules include initializing an auxiliary variable z(0) = y and applying the following
for t = 0, 1, 2, ...:

θ(t+1) = proxf (z(t))

z(t+1) = z(t) + proxg(2θ
(t+1) − z(t))− θ(t+1).

There are multiple ways of applying this to our problem. We apply the DR algorithm to the dual of the following
reformulation according to (Barbero and Sra, 2018, Algorithm 9):

minimize
θ∈Rn

1

2
‖θ‖22 +

(
λ‖D(k+1)

N ⊗ Iθ‖1 − 〈θ, y〉
)

+
(
λ‖I ⊗D(k+1)

N θ‖1
)
. (S.44)
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We refer interested readers to (Barbero and Sra, 2018) for the derivation of the dual and the conversion of the problem
into one that resembles (S.43). Ultimately, the proximal operator of the conjugate function (an indicator on a certain
polytope) can be evaluated using the proximal operator of the r1 and r2 as in the proximal Dykstra updates via the
Moreau decomposition:

proxri(u) + proxr∗i (u) = u.

In other words, the Douglas-Rachford algorithm enjoys the same computational benefits of the proximal Dykstra’s
algorithm as each proximal operator evaluation involves only solving 1D trend filtering problems in parallel.
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