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ABSTRACT
Nearly all estimators in statistical prediction come with an associated tuning parameter, in one way or
another. Common practice, given data, is to choose the tuning parameter value that minimizes a con-
structed estimate of the prediction error of the estimator; we focus on Stein’s unbiased risk estimator, or
SURE, which forms an unbiased estimate of the prediction error by augmenting the observed training error
with an estimate of the degrees of freedom of the estimator. Parameter tuning via SURE minimization has
been advocated by many authors, in a wide variety of problem settings, and in general, it is natural to ask:
what is the prediction error of the SURE-tuned estimator? An obvious strategy would be simply use the
apparent error estimate as reported by SURE, that is, the value of the SURE criterion at its minimum, to esti-
mate the prediction error of the SURE-tuned estimator. But this is no longer unbiased; in fact, we would
expect that the minimum of the SURE criterion is systematically biased downwards for the true prediction
error. In this work, we de!ne the excess optimism of the SURE-tuned estimator to be the amount of this
downward bias in the SURE minimum. We argue that the following two properties motivate the study of
excess optimism: (i) an unbiased estimate of excess optimism, added to the SURE criterion at its minimum,
gives an unbiased estimate of the prediction error of the SURE-tuned estimator; (ii) excess optimism serves
as an upper bound on the excess risk, that is, the di"erence between the risk of the SURE-tuned estimator
and the oracle risk (where the oracle uses the best !xed tuning parameter choice). We study excess opti-
mism in two common settings: shrinkage estimators and subset regression estimators. Our main results
include a James–Stein-like property of the SURE-tuned shrinkage estimator, which is shown to dominate
the MLE; and both upper and lower bounds on excess optimism for SURE-tuned subset regression. In the
latter setting, when the collection of subsets is nested, our bounds are particularly tight, and reveal that in
the case of no signal, the excess optimism is always in between 0 and 10 degrees of freedom, regardless of
howmany models are being selected from. Supplementary materials for this article are available online.

1. Introduction

Consider dataY ∈ Rn, drawn from a generic model

Y ∼ F, where E(Y ) = θ0, cov(Y ) = σ 2I. (1)

The mean θ0 ∈ Rn is unknown, and the variance σ 2 > 0 is
assumed to be known. Let θ̂ ∈ Rn denote an estimator of the
mean. De!ne the prediction error, also called test error or just
error for short, of θ̂ by

Err(θ̂ ) = E‖Y ∗ − θ̂ (Y )‖22, (2)

whereY ∗ ∼ F is independent ofY and the expectation is taken
over all that is random (over bothY,Y ∗). A remark about nota-
tion: we write θ̂ to denote an estimator (also called a rule, proce-
dure, or algorithm), and θ̂ (Y ) to denote an estimate (a particular
realization given data Y ). Hence, it is perfectly well-de!ned to
write the error as Err(θ̂ ); this is indeed a !xed (i.e., nonrandom)
quantity, because θ̂ represents a rule, not a randomvariable. This
will be helpful to keep in mind when our notation becomes a bit
more complicated.
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Estimating prediction error as in (2) is a classical problem in
statistics. One convenient method that does not require the use
of held-out data stems from the optimism theorem, which says
that

Err(θ̂ ) = E‖Y − θ̂ (Y )‖22 + 2σ 2df (θ̂ ), (3)

where df (θ̂ ), called the degrees of freedom of θ̂ , is de!ned as

df (θ̂ ) = 1
σ 2 tr

(
cov(θ̂ (Y ),Y )

)
= 1

σ 2

n∑

i=1

cov(θ̂i(Y ),Yi). (4)

Let us de!ne the optimism of θ̂ as Opt(θ̂ ) = E‖Y ∗ − θ̂ (Y )‖22 −
E‖Y − θ̂ (Y )‖22, the di"erence in prediction and training errors.
Then, we can rewrite (3) as

Opt(θ̂ ) = 2σ 2df (θ̂ ), (5)

which explains its name. A nice treatment of the optimism theo-
rem can be found in Efron (2004), though the idea can be found
much earlier, for example, Mallows (1973), Stein (1981), Efron
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(1986). In fact, Efron (2004) developedmore general versions of
the optimism theorem in (3), beyond the standard setup in (1),
(2); we discuss extensions along these lines in the supplementary
document.

The optimism theorem in (3) suggests an estimator for the
error in (2), de!ned by

Êrr(Y ) = ‖Y − θ̂ (Y )‖22 + 2σ 2d̂f (Y ), (6)

where d̂f is any unbiased estimator of the degrees of freedom of
θ̂ , as de!ned in (4), that is, it satis!esE[d̂f (Y )] = df (θ̂ ). Clearly,
from (6) and (3), we see that

E[Êrr(Y )] = Err(θ̂ ), (7)

that is, Êrr is an unbiased estimator of the prediction error of
θ̂ . We will call the estimator Êrr in (6) Stein’s unbiased risk esti-
mator, or SURE, in honor of Stein (1981). This is somewhat of
an abuse of notation, as Êrr is actually an estimate of prediction
error, Err(θ̂ ) in (2), and not risk,

Risk(θ̂ ) = E‖θ0 − θ̂ (Y )‖22. (8)

However, the two are essentially equivalent notions, because
Err(θ̂ ) = nσ 2 + Risk(θ̂ ). (As such, in what follows, we will
occasionally focus on risk instead of prediction error, when it
is convenient.)

We note that when θ̂ is a linear regression estimator (onto a
!xed and full column rank design matrix), the degrees of free-
dom of θ̂ is simply p, the number of predictor variables in the
regression, and SURE reduces to Mallows’ Cp (Mallows 1973),
or equivalently, AIC (Akaike 1973), since σ 2 is assumed to be
known.

1.1. Stein’s Formula

Stein (1981) studied a risk decomposition, as in (6), with the spe-
ci!c degrees of freedom estimator

d̂f (Y ) = (∇ · θ̂ )(Y ) =
n∑

i=1

∂θ̂i

∂Yi
(Y ), (9)

called the divergence of the map θ̂ : Rn → Rn. Assuming a nor-
mal distribution F = N(θ0, σ

2I) for the data in (1) and regu-
larity conditions on θ̂ (speci!cally, weak di"erentiability and an
integrability condition on the components of the weak deriva-
tive), Stein showed that the divergence estimator in (9) is unbi-
ased for df (θ̂ ); to be explicit

df (θ̂ ) = E
[ n∑

i=1

∂θ̂i

∂Yi
(Y )

]
. (10)

This elegant result has had a signi!cant following in statistics
(e.g., see the references below).

1.2. Parameter Tuning via SURE

Here and henceforth, we write θ̂s for the estimator of interest,
where the subscript shighlights the dependence of this estimator
on a tuning parameter, taking values in a set S. The term “tuning
parameter” is used loosely, and we do not place any restrictions

on S (e.g., this can be a continuous or a discrete collection of
tuning parameter values). Abstractly, we can just think of {θ̂s :
s ∈ S} as a family of estimators under consideration.We use Êrrs
to denote the prediction error estimator in (6) for θ̂s, and d̂f s to
denote an unbiased degrees of freedom estimator for θ̂s.

One sensible strategy for choosing the tuning parameter s,
associatedwith our estimator θ̂s, is to select the valueminimizing
SURE in (6), denoted

ŝ(Y ) = argmin
s∈S

Êrrs(Y ). (11)

We can think of ŝ as an estimator of some optimal tuning param-
eter value, namely, an estimator of

s0 = argmin
s∈S

Err(θ̂s), (12)

the tuning parameter value that minimizes error. When θ̂s is
the linear regression estimator onto a set of predictor variables
indexed by the parameter s, the rule in (11) encompasses model
selection viaCp minimization, which is a classical topic in statis-
tics. In general, tuning parameter selection via SURE mini-
mization has been widely advocated by authors across various
problem settings, for example, Donoho and Johnstone (1995),
Johnstone (1999), Zou, Hastie, and Tibshirani (2007), Zou
and Yuan (2008), Tibshirani and Taylor (2011, 2012), Candes,
Sing-Long, and Trzasko (2013), Ulfarsson and Solo (2013a, b),
Chen, Lin, and Sen (2015), just to name a few.

1.3. What is the Error of the SURE-tuned Estimator?

Having decided to use ŝ as a rule for choosing the tuning param-
eter, it is natural to ask:what is the error of the subsequent SURE-
tuned estimator θ̂ŝ? To be explicit, this estimator produces the
estimate θ̂ŝ(Y )(Y ) given dataY , where ŝ(Y ) is the tuning param-
eter value minimizing the SURE criterion, as in (11). Initially, it
might seem reasonable to use the apparent error estimate given
to us by SURE, that is, Êrrŝ(Y )(Y ), to estimate the prediction
error of θ̂ŝ. To be explicit, this gives

Êrrŝ(Y )(Y ) = ‖Y − θ̂ŝ(Y )(Y )‖22 + 2σ 2d̂f ŝ(Y )(Y )

at each given data realization Y . However, even though Êrrs is
unbiased for Err(θ̂s) for each !xed s ∈ S, the estimator Êrrŝ is no
longer generally unbiased for Err(θ̂ŝ), and commonly, it will be
too optimistic, that is, we will commonly observe that

E[Êrrŝ(Y )(Y )] < Err(θ̂ŝ) = E‖Y ∗ − θ̂ŝ(Y )(Y )‖22. (13)

After all, for each data instance Y , the value ŝ(Y ) is speci!cally
chosen to minimize Êrrs(Y ) over all s ∈ S, and thus we would
expect Êrrŝ to be biased downward as an estimator of the error
of θ̂ŝ. Of course, the optimism of training error, as displayed in
(3)–(5), is by now a central principle in statistics and (we believe)
nearly all statisticians are aware of and account for this optimism
in applied statistical modeling. But the optimism of the opti-
mized SURE criterion itself, as suggested in (13), is more subtle
and has received less attention.
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1.4. Excess Optimism

In light of the above discussion, we de!ne the excess optimism
associated with θ̂ŝ by1

ExOpt(θ̂ŝ) = Err(θ̂ŝ) − E[Êrrŝ(Y )(Y )]. (14)

We similarly de!ne the excess degrees of freedom of θ̂ŝ by

edf (θ̂ŝ) = df (θ̂ŝ) − E[d̂f ŝ(Y )(Y )]. (15)

The same motivation for excess optimism can be retold from
the perspective of degrees of freedom: even though the degrees
of freedom estimator d̂f s is unbiased for df (θ̂s) for each s ∈ S,
we should not expect d̂f ŝ to be unbiased for df (θ̂ŝ), and it will be
commonly biased downward, that is, excess degrees of freedom
in (15) will be commonly positive.

It should be noted that the two perspectives—excess opti-
mism and excess degrees of freedom—are equivalent, as the
optimism theorem in (3) (which holds for any estimator) applied
to θ̂ŝ tells us that

Err(θ̂ŝ) = E‖Y − θ̂ŝ(Y )(Y )‖22 + 2σ 2df (θ̂ŝ).

Therefore, we have

ExOpt(θ̂ŝ) = 2σ 2edf (θ̂ŝ),

analogous to the usual relationship between optimism and
degrees of freedom.

It should also be noted that the focus on prediction error,
rather than risk, is a decision based on ease of exposition, and
that excess optimism can be equivalently expressed in terms of
risk, that is,

ExOpt(θ̂ŝ) = Risk(θ̂ŝ) − E[R̂iskŝ(Y )(Y )], (16)

where we de!ne R̂isks = Êrrs − nσ 2, an unbiased estimator of
Risk(θ̂s) in (8), for each s ∈ S.

Finally, a somewhat obvious but important point is the fol-
lowing: an unbiased estimator êdf of excess degrees of free-
dom edf (θ̂ŝ) leads to an unbiased estimator of prediction error
Err(θ̂ŝ), that is, Êrrŝ + 2σ 2êdf , by construction of excess degrees
of freedom in (15). Likewise, R̂iskŝ + 2σ 2êdf is an unbiased esti-
mator of the risk Risk(θ̂ŝ).

1.5. Is Excess OptimismAlways Nonnegative?

Intuitively, it seems that excess optimism should be always non-
negative, that is, for any “reasonable” class of estimators, the
expectation of the SURE criterion at its minimum should be no
larger than the actual error rate of the SURE-tuned estimator.
However, we are not able to give a general proof of this claim. In
each setting that we study in this work—shrinkage estimators,
subset regression estimators, and soft-thresholding estimators—
we prove that the excess degrees of freedom is nonnegative,
albeit using di"erent proof techniques. For “reasonable” classes
of estimators, we have not seen evidence, either theoretical or

 The excess optimism here is not only associated with θ̂ŝ itself, but also with the
SURE family {Êrrs : s ∈ S}, used to define ŝ. This is meant to be implicit in our lan-
guage and our notation.

empirical, that suggests excess degrees of freedom can be nega-
tive; but in the absence of a general result, of course, we cannot
rule out the possibility that it is negative in some (likely patho-
logical) situations.

1.6. Summary of Contributions

The goal of thiswork is to understand excess optimism, or equiv-
alently, excess degrees of freedom, associated with estimators
that are tuned by optimizing SURE. Below,we provide an outline
of our results and contributions.! In Section 2, we develop further motivation for the study

of excess optimism, by showing that it upper bounds the
excess risk, that is, the di"erence between the risk of the
estimator in question and the oracle risk, in Theorem 2.1.! In Section 3, we precisely characterize (and give an unbi-
ased estimator for) the excess degrees of freedom of the
SURE-tuned shrinkage estimator, both in a classical nor-
mal means problem setting and in a regression setting,
in (24) and (32), respectively. This shows that the excess
degrees of freedom in both of these settings is always
nonnegative, and at most 2. Our analysis also reveals an
interesting connection between SURE-tuned shrinkage
estimation and James–Stein estimation.! In Sections 4 and 5.4, we derive bounds on the excess
degrees of freedom of the SURE-tuned subset regression
estimator (or equivalently, the Cp-tuned subset regres-
sion estimator), using di"erent approaches. Theorem 4.1
shows from !rst principles that, under reasonable con-
ditions on the subset regression models being consid-
ered, the excess degrees of freedom of SURE-tuned subset
regression is small compared to the oracle risk. Theorems
5.3 and 5.4 are derived using a more re!ned general
result, from Mikkelsen and Hansen (2016), and present
exact (though not always explicitly computable) expres-
sions for excess degrees of freedom. Some implications
for the excess degrees of freedom of the SURE-tuned sub-
set regression estimator: we see that it is always non-
negative, and it is surprisingly small for nested subsets,
for example, it is at most 10 for any nested collection
of subsets (no matter the number of predictors) when
θ0 = 0.! In Section 5, we examine strategies for characterizing the
excess degrees of freedom of generic estimators using
Stein’s formula, and extensions of Stein’s formula for dis-
continuous mappings from Tibshirani (2015), Mikkelsen
and Hansen (2016). We use the extension from Tibshirani
(2015) in Section 5.3 to prove that excess degrees of free-
dom in SURE-tuned soft-thresholding is always nonneg-
ative. We use that from Mikkelsen and Hansen (2016) in
Section 5.4 to prove results on subset regression, already
described.! In Section 6, we study a simple bootstrap procedure for
estimating excess degrees of freedom, which appears to
work reasonably well in practice.! In Section 7, we wrap up with a short discussion, and
describe the implications of some of our technical results
on the degrees of freedom of the best subset selection esti-
mator. Extensions of our work, to heteroscedastic data,
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and alternative loss functions (other than squared loss), are
described in the supplement.

1.7. RelatedWork

There is a lot of work related to the topic of this article. In
addition to the classical contributions of Mallows (1973), Stein
(1981), Efron (1986, 2004), on optimism and degrees of free-
dom, that have already been discussed, it is worth mentioning
Breiman (1992). In Section 2 of this work, the author warns pre-
cisely of the downward bias of SURE for estimating prediction
error in regression models, when the former is evaluated at the
model that minimizes SURE (or here, Cp). Breiman was thus
keenly aware of excess optimism; he roughly calculated, for all
subsets regression with p orthogonal variables, that the SURE-
tuned subset regression estimator has an approximate excess
optimism of 0.84pσ 2, in the null case when θ0 = 0.

Several authors have addressed the problem of characterizing
the risk of an estimator tuned by SURE (or a similar method)
by uniformly controlling the deviations of SURE from its mean
over all tuning parameter values s ∈ S, that is, by establishing
that a quantity like sups∈S |R̂isks(Y ) − Risk(θ̂s)|, in our notation,
converges to zero in a suitable sense. Examples of this uniform
control strategy are found in Li (1985, 1986, 1987), Kneip (1994),
who study linear smoothers; Donoho and Johnstone (1995),
who study wavelet smoothing; Cavalier et al. (2002), who study
linear inverse problems in sequence space; and Xie, Kou, and
Brown (2012), who study a family of shrinkage estimators in a
heteroscedastic model. Notice that the idea of uniformly con-
trolling the deviations of SURE away from its mean is quite dif-
ferent in spirit than our approach, in which we directly seek to
understand the gap between E[R̂iskŝ(Y )(Y )] and Risk(θ̂ŝ). It is
not clear to us that uniform control of SURE deviations can be
used in general to understand this gap precisely, that is, to under-
stand excess optimism precisely.

Importantly, the strategy of uniform control can often be
used to derive so-called oracle inequalities of the form

Risk(θ̂ŝ) ≤ (1 + o(1))Risk(θ̂s0 ). (17)

Such oracle inequalities were derived in Li (1985, 1986, 1987),
Kneip (1994), Donoho and Johnstone (1995), Cavalier et al.
(2002), Xie, Kou, and Brown (2012). In Section 2, we will return
to the oracle inequality (17), andwill show that (17) can be estab-
lished in some cases via a bound on excess optimism.

When the data are normally distributed, that is, when F =
N(θ0, σ

2I) in (1), one might think to use Stein’s formula on the
SURE-tuned estimator θ̂ŝ itself, to compute its proper degrees
of freedom, and hence excess optimism. This idea is pursued
in Section 5, where we also show that implicit di"erentiation
can be applied to characterize the excess degrees of freedom,
under some assumptions. These assumptions, however, are very
strong. Stein’s original work (Stein 1981) established the result in
(10), when the estimator θ̂ is weakly di"erentiable, as a function
ofY . But, even when θ̂s is itself continuous inY for each s ∈ S, it
is possible for the SURE-tuned estimator θ̂ŝ to be discontinuous
inY , and when the discontinuities become severe enough, weak
di"erentiability fails and Stein’s formula does not apply. Tibshi-
rani (2015) andMikkelsen andHansen (2016) derive extensions

of Stein’s formula to deal with estimators having (speci!c types
of) discontinuities. We leverage these extensions in Section 5.

A parallel problem is to study the excess optimism associ-
ated with parameter tuning by cross-validation, considered in
Varma and Simon (2006), Tibshirani and Tibshirani (2009),
Bernau, Augustin, and Boulesteix (2013), Krstajic et al. (2014),
Tsamardinos, Rakhshani, and Lagani (2015). Since it is di#cult
to study cross-validation mathematically, these works do not
develop formal characterizations or corrections and are mostly
empirically driven.

Finally, it is worth mentioning that some of the motivation
of Efron (2014) is similar to that in our article, though the focus
is di"erent: Efron focused on constructing proper estimates of
standard error (and con!dence intervals) for estimators that
are de!ned with inherent parameter tuning (he used the term
“model selection” rather than parameter tuning). Discontinu-
ities play a major role in Efron (2014), as they do in ours (i.e.,
in our Section 5); Efron proposed to replace parameter-tuned
estimators with bagged (bootstrap aggregated) versions, as the
latter estimators are smoother and can lead to smaller standard
errors (or shorter con!dence intervals). More generally, post-
selection inference, as studied in Berk et al. (2013), Lockhart
et al. (2014), Lee et al. (2016), Tibshirani et al. (2016), Fithian,
Sun, andTaylor (2014) and several other papers, is also related in
spirit to our work, though our focus is on prediction error rather
than inference.While post-selection prediction can also be stud-
ied from the conditional perspective that is often used in post-
selection inference, this seems to be less common. A notable
exception is Tian Harris (2016), who proposes a clever random-
ization scheme for estimating prediction error conditional on a
model selection event, in regression.

2. An Upper Bound on the Oracle Gap

We derive a simple inequality that relates the error of the esti-
mator θ̂ŝ to the error of what we may call the oracle estimator
θ̂s0 , where s0 is the tuning parameter value that minimizes the
(unavailable) true prediction error, as in (12). Observe that

E[Êrrŝ(Y )(Y )] = E
(
min
s∈S

Êrrs(Y )
)

≤ min
s∈S

E[Êrrs(Y )]

= min
s∈S

Err(θ̂s) = Err(θ̂s0 ). (18)

By adding Err(θ̂ŝ) to the left- and right-most expressions, and
then rearranging, we have established the following result.

Theorem 2.1. For any family of estimators {θ̂s : s ∈ S}, it holds
that

Err(θ̂ŝ) ≤ Err(θ̂s0 ) + ExOpt(θ̂ŝ). (19)

Here, ŝ is the tuning parameter rule de!ned by minimizing
SURE, as in (11), s0 is the oracle tuning parameter value min-
imizing prediction error, as in (12), and ExOpt(θ̂ŝ) is the excess
optimism, as de!ned in (14).

Theorem 2.1 says that the excess optimism, which is a
quantity that we can in principle calculate (or at least, estimate),
serves as an upper bound for the gap between the prediction
error of θ̂ŝ and the oracle error. This gives an interesting,
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alternative motivation for excess optimism to that given in the
introduction: excess optimism tells us how far the SURE-tuned
estimator θ̂ŝ can be from the bestmember of the class {θ̂s : s ∈ S},
in terms of prediction error. A few remarks are in order.

Remark 2.1 (Risk inequality). Recalling that excess optimism can
be equivalently posed in terms of risk, as in (16), the bound in
(19) can also be written in terms of risk, namely,

Risk(θ̂ŝ) ≤ Risk(θ̂s0 ) + ExOpt(θ̂ŝ), (20)

which says the excess risk Risk(θ̂ŝ) − Risk(θ̂s0 ) of the SURE-
tuned estimator is upper bounded by its excess optimism,
ExOpt(θ̂ŝ). If we can show that this excess optimism is small
compared to the oracle risk, in particular, if we can show that
ExOpt(θ̂ŝ) = o(Risk(θ̂s0 )), then (20) implies the oracle inequal-
ity (17). We will revisit this idea in Sections 3 and 4.

Remark 2.2 (Beating the oracle). If ExOpt(θ̂ŝ) < 0, then (19)
implies θ̂ŝ outperforms the oracle, in terms of prediction error
(or risk). Technically this is not impossible, as θs0 is the optimal
!xed-parameter estimator, in the class {θs : s ∈ S}, whereas θ̂ŝ is
tuned in a data-dependent fashion. But it seems unlikely to us
that excess optimism can be negative, recall Section 1.5.

Remark 2.3 (Beyond SURE). The argument in (18) and thus the
validity of Theorem 2.1 only used the fact that ŝ was de!ned
by minimizing an unbiased estimator of prediction error, and
SURE is not the only such estimator. For example, the result in
Theorem 2.1 applies to the standard hold-out estimator of pre-
diction error, when hold-out dataY ∗ ∼ F (independent ofY ) is
available. While the result does not exactly carry over to cross-
validation (since the standard cross-validation estimator of pre-
diction error is not unbiased in !nite samples, at least not with-
out additional corrections and assumptions), we can think of it
as being true in some approximate sense.

3. Shrinkage Estimators

In this section, we focus on shrinkage estimators, and consider
normal data, Y ∼ F = N(θ0, σ

2I) in (1). Due to the simple
form of the family of shrinkage estimators (and the normality
assumption), we can compute an (exact) unbiased estimator of
excess degrees of freedom, and excess optimism.

3.1. Shrinkage in NormalMeans

First, we consider the simple family of shrinkage estimators

θ̂s(Y ) = Y
1 + s

, for s ≥ 0. (21)

In this case, we can see that df (θ̂s) = n/(1 + s) for each s ≥ 0,
and SURE in (6) is

Êrrs(Y ) = ‖Y‖22
s2

(1 + s)2
+ 2σ 2 n

1 + s
. (22)

The next lemma characterizes ŝ, the mapping de!ned by the
minimizer of the above criterion. The proof is elementary; as
with all proofs in this article, is given in the supplement.

Lemma 3.1. De!ne g(x) = ax2/(1 + x)2 + 2b/(1 + x), where
a, b > 0. Then, the minimizer of g over x ≥ 0 is

x∗ =
{ b

a−b if a > b
∞ if a ≤ b.

According to Lemma 3.1, the rule ŝ de!ned by minimizing
(22) is

ŝ(Y ) =






nσ 2

‖Y‖22 − nσ 2 if ‖Y‖22 > nσ 2

∞ if ‖Y‖22 ≤ nσ 2.

Plugging this in gives the SURE-tuned shrinkage estimate
θ̂ŝ(Y )(Y ) = Y/(1 + ŝ(Y )). Note that this is weakly di"erentiable
as a function of Y , and so by Stein’s formula (10), we can form
an unbiased estimator of its degrees of freedom by computing
its divergence. When ŝ(Y ) < ∞, the divergence is

n
1 + ŝ(Y )

−
n∑

i=1

Yi
(1 + ŝ(Y ))2

∂ ŝ
∂Yi

(Y )

= n
1 + ŝ(Y )

+
n∑

i=1

Yi
(1 + ŝ(Y ))2

nσ 2

(‖Y‖22 − nσ 2)2
2Yi

= n
1 + ŝ(Y )

+ 2ŝ(Y )

1 + ŝ(Y )
. (23)

When ŝ(Y ) = ∞, the divergence is 0.
Hence, we can see directly that for the SURE-tuned shrinkage

estimator θ̂ŝ, we have the excess degrees of freedom bound

edf (θ̂ŝ) = E
(

2ŝ(Y )

1 + ŝ(Y )
; ŝ(Y ) < ∞

)
≤ 2, (24)

and so ExOpt(θ̂ŝ) ≤ 4σ 2. A lot is known about shrinkage esti-
mators in the current normal means problem that we are con-
sidering, dating back to the seminal work of James and Stein
(1961); some excellent recent references are Chapter 1 of Efron
(2010), and Chapter 2 of Johnstone (2015). It is easy to show
that the oracle choice of tuning parameter in the current setting
is s0 = nσ 2/‖θ0‖22, and so

Risk(θ̂s0 ) = nσ 2‖θ0‖22
nσ 2 + ‖θ0‖22

. (25)

By our excess optimism bound of 4σ 2, and Theorem 2.1 (actu-
ally, (20), the risk version of the result in the theorem), the risk
of the SURE-tuned shrinkage estimator θ̂ŝ satis!es

Risk(θ̂ŝ) ≤ nσ 2‖θ0‖22
nσ 2 + ‖θ0‖22

+ 4σ 2. (26)

Remark 3.1 (Oracle inequality for SURE-tuned shrinkage). For
large ‖θ0‖22, the risk gap of 4σ 2 for the SURE-tuned shrinkage
estimator is negligible next to the oracle risk in (25). Speci!cally,
if ‖θ0‖22 → ∞ as n → ∞ (with σ 2 held constant), then we see
that (26) implies the oracle inequality (17) for the SURE-tuned
shrinkage estimator.
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3.2. Interlude: James-Stein Estimation

The SURE-tuned shrinkage estimator of the last subsection can
be written as

θ̂ŝ(Y )(Y ) =






1
1 + nσ 2

‖Y‖22−nσ 2

Y if ‖Y‖22 > nσ 2

0 if ‖Y‖22 ≤ nσ 2,

or more concisely, as

θ̂ŝ(Y )(Y ) =
(
1 − nσ 2

‖Y‖22

)

+
Y, (27)

where we write x+ = max{x, 0} for the positive part of x. Mean-
while, the positive part James–Stein estimator (James and Stein
1961; Baranchik 1964) is de!ned as

θ̂ JS+(Y ) =
(
1 − (n − 2)σ 2

‖Y‖22

)

+
Y, (28)

so the two estimators (27) and (28) only di"er by the appear-
ance of n versus n − 2 in the shrinkage factor. This connection—
between SURE-tuned shrinkage estimation and positive part
James–Stein estimation—seems to be not very well-known, and
was a surprise to us; after writing an initial draft of this article,
we found that this fact was mentioned in passing in Xie, Kou,
and Brown (2012). We now give a few remarks.

Remark 3.2 (Dominating the MLE). It can be shown that the
SURE-tuned shrinkage estimator in (27) dominates the MLE,
that is, θ̂MLE(Y ) = Y , just like the positive part James–Stein esti-
mator in (28). For this to be true of the former estimator, we
require n ≥ 5, while the latter estimator only requires n ≥ 3.

Our proof of θ̂ŝ dominating θ̂MLE mimicks Stein’s elegant
proof for the James-Stein estimator, (Stein 1981). Consider
SURE for θ̂ŝ, which gives an unbiased estimator of the risk of θ̂ŝ,
provided we compute its divergence properly, as in (23). Write
R̂ for this unbiased risk estimator. If ŝ(Y ) < ∞, that is, ‖Y‖22 >

nσ 2, then

R̂(Y ) = −nσ 2 + ŝ(Y )2

(1 + ŝ(Y ))2
‖Y‖22

+2σ 2
(

n
1 + ŝ(Y )

+ 2ŝ(Y )

1 + ŝ(Y )

)

= −nσ 2 + (nσ 2)2

‖Y‖22
+ 2nσ 2 ‖Y‖22 − nσ 2

‖Y‖22
+ 4σ 2 nσ 2

‖Y‖22

= nσ 2 − (n − 4)σ 2 nσ 2

‖Y‖22
< nσ 2.

If ŝ(Y ) = ∞, that is, ‖Y‖22 ≤ nσ 2, then we have R̂(Y ) =
−nσ 2 + ‖Y‖22 ≤ 0. Taking an expectation, we thus see that
Err(θ̂ŝ) = E[R̂(Y )] < nσ 2, which establishes the result, as nσ 2

is the risk of the MLE.
Remark 3.3 (Risk of positive part James–Stein). A straightforward
calculation, similar to that given above for θ̂ŝ (see also Theorem
5.3 of Donoho and Johnstone (1995)) shows that the risk of the
positive part James–Stein estimator satis!es

Risk(θ̂ JS+) ≤ nσ 2‖θ0‖22
nσ 2 + ‖θ0‖22

+ 2σ 2, (29)

so it admits an even tighter gap to the oracle risk than does the
SURE-tuned shrinkage estimator, recalling (26).

As for the risk of the positive part James–Stein estimator θ̂ JS+

versus that of the SURE-tuned shrinkage estimator θ̂ŝ, neither
one is always better than the other. When ‖θ0‖22 is small, the lat-
ter fares better since it shrinks more; when ‖θ0‖22 is small, the
opposite is true. This can be con!rmed via calculations with
Stein’s unbiased risk estimator (to bound the risks of θ̂ JS+, θ̂ŝ,
similar to the arguments in the previous remark).

3.3. Shrinkage in Regression

Now, we consider the family of regression shrinkage estimators

θ̂s(Y ) = PXY
1 + s

, for s ≥ 0, (30)

where we write PX ∈ Rn×n for the projection matrix onto
the column space of a predictor matrix X ∈ Rn×p, that is,
PX = X (XTX )−1XT if X has full column rank, and PX =
X (XTX )+XT otherwise (here and throughout, A+ denotes the
pseudoinverse of a matrix A).

Treating X as !xed (nonrandom), it is easy to check that
SURE (6) for our regression shrinkage estimator is

Êrrs(Y ) = ‖PXY‖22
s2

(1 + s)2
+ 2σ 2 r

1 + s
, (31)

where r = rank(X ), the rank of X . This is directly analogous to
(22) in the normal means setting, and Lemma 3.1 shows that the
minimizer ŝ of (31) is de!ned by

ŝ(Y ) =






rσ 2

‖PXY‖22 − rσ 2 if ‖PXY‖22 ≥ rσ 2

∞ if ‖PXY‖22 < rσ 2.

The same arguments as in Section 3.1 then lead to the same
excess degrees of freedom bound

edf (θ̂ŝ) = E
(

2ŝ(Y )

1 + ŝ(Y )
; ŝ(Y ) < ∞

)
≤ 2, (32)

thus ExOpt(θ̂ŝ) ≤ 4σ 2. By direct calculation, the oracle tuning
parameter is s0 = rσ 2/‖PXθ0‖22, and now

Risk(θ̂s0 ) = rσ 2‖θ0‖22 + ‖PXθ0‖22(‖θ0‖22 − ‖PXθ0‖22)
rσ 2 + ‖PXθ0‖22

. (33)

Combining our excess optimism bound of 4σ 2 with Theorem
2.1 (i.e., combining it with (20)), we have

Risk(θ̂ŝ) ≤ rσ 2‖θ0‖22 + ‖PXθ0‖22(‖θ0‖22 − ‖PXθ0‖22)
rσ 2 + ‖PXθ0‖22

+ 4σ 2.

(34)

Remark 3.4 (Oracle inequality for SURE-tuned regression
shrinkage). The risk gap of 4σ 2, for the SURE-tuned regression
shrinkage estimator, will be negligible next to the oracle risk (33)
under various su#cient conditions. For example, if ‖θ0‖22 → ∞
and ‖PXθ0‖22|‖θ0‖22 − ‖PXθ0‖22| = O(r) as n, r → ∞ (and σ 2 is
held constant), then it is not hard to check that (34) implies the
oracle inequality (17) for the SURE-tuned regression shrinkage
estimator.
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3.4. Interlude: James–Stein and Ridge Regression

The SURE-tuned regression shrinkage estimator of the previous
subsection can be expressed as

θ̂ŝ(Y )(Y ) =
(
1 − rσ 2

‖PXY‖22

)

+
PXY, (35)

which resembles the positive part James–Stein regression
estimator

θ̂ JS+(Y ) =
(
1 − (r − 2)σ 2

‖PXY‖22

)

+
PXY. (36)

As before, the SURE-tuned regression shrinkage estimator (35)
dominates the MLE (i.e., the least squares regression estima-
tor), θ̂MLE(Y ) = PXY . The positive-part James–Stein estima-
tor (36) also dominates the MLE, and neither the SURE-tuned
regression shrinkage estimator nor the positive-part James–
Stein regression estimator dominates the other.

We point out a connection to penalized regression. For any
!xed tuning parameter value s ≥ 0, we can express the esti-
mate in (30) as θ̂s(Y ) = X β̂s(Y ), where β̂s(Y ) solves the con-
vex (thoughnot necessarily strictly convex) penalized regression
problem,

β̂s(Y ) ∈ argmin
β∈Rp

‖Y − Xβ‖22 + s‖Xβ‖22. (37)

Hence, an alternative interpretation for the estimator θ̂ŝ in (35)
(whose close cousin is the positive part James–Stein regression
estimator θ̂ JS+ in (36)) is that we are using SURE to select the
tuning parameter over the family of penalized regression esti-
mators in (37), for s ≥ 0. This has the precise risk guarantee in
(34) (and θ̂ JS+ enjoys an even stronger guarantee, with 2σ 2 in
place of 4σ 2).

Compared to (37), amore familiar penalized regression prob-
lem tomost statisticians is perhaps the ridge regression problem
(Hoerl and Kennard 1970),

β̂
ridge
s (Y ) = argmin

β∈Rp
‖Y − Xβ‖22 + s‖β‖22. (38)

Several di"erences between (37) and (38) can be enumerated;
one interesting di"erence is that the solution in the former prob-
lem shrinks uniformly across all dimensions 1, . . . , p, whereas
that in the latter problem shrinks less in directions of high vari-
ance andmore in directions of low variance, de!nedwith respect
to the predictor variables (i.e., shrinks less in the top eigendirec-
tions of XTX).

It is generally accepted that neither regression shrinkage esti-
mator, in (37) and (38), is better than the other.2 But, we have
seen that SURE-tuning in the !rst problem (37) provides us
with an estimator θ̂ŝ = X β̂ŝ that has a de!nitive risk guaran-
tee (34) and provably dominates the MLE. The story for ridge
regression is less clear; to quote Efron and Hastie (2016), Chap-
ter 7.3: “There is no [analogous] guarantee for ridge regression,
and no foolproof way to choose the ridge parameter.” Of course, if
we could bound the excess degrees of freedom for SURE-tuned

 It is worth pointing out that the former problem () does not give a well-defined,
that is, unique solution for the coefficients when rank(X ) < p, and the latter
problem () does, when s > 0.

Figure . An illustration of a discontinuous mapping ŝ. Each curve represents the
SURE criterion G(Y, ·), as a function of the tuning parameter s, at nearby values of
the (one-dimensional) data realizationY . AsY varies,G(Y, ·) changes smoothly, but
its minimizer ŝ(Y ) jumps discontinuously, from about . atY = 0.3 (green curve)
to . atY = 0.4 (blue curve).

ridge regression, then this could lead (depending on the size
of the bound) to a useful risk guarantee, providing some rig-
orous backing to SURE tuning for ridge regression. However,
characterizing excess degrees of freedom for ridge regression is
far from straightforward, for two reasons: (i) the SURE-optimal
tuning parameter map ŝ is not available in a closed form for
ridge regression, and (ii) the SURE-tuned ridge estimator θ̂

ridge
ŝ

is not necessarily continuous with respect to the data Y , thus
(supposing the discontinuities are severe enough to violate weak
di"erentiability) Stein’s formula cannot be used to compute an
unbiased estimator of its degrees of freedom. (Speci!cally, it is
unclear whether the SURE-optimal ridge parameter map ŝ is
itself continuous with respect to Y , as it is de!ned by the mini-
mizer of a possibly multimodal SURE criterion; see Figure 1.)

The second reason above, that is (possibly severe) discon-
inuities in θ̂

ridge
ŝ , is what truly complicates the analysis. Even

when ŝ cannot be expressed in closed form, implicit di"eren-
tiation can be used to compute the divergence of θ̂

ridge
ŝ , as we

explain in Section 5.1; but this divergence will not generally be
enough to characterize the degrees of freedom (and thus excess
degrees of freedom) of θ̂

ridge
ŝ in the presence of discontinuities.

Extensions of Stein’s divergence formula from Tibshirani (2015)
and Mikkelsen and Hansen (2016) can be used to characterize
degrees of freedom for estimators having certain types of discon-
tinuities, which we review in Section 5.2. Generally speaking,
these extensions involve sophisticated calculations. In the sup-
plement, we revisit the ridge regression problem, and compute
the divergence of the SURE-tuned ridge estimator via implicit
di"erentiation, but we leave proper treatment of its discontinu-
ities to future work.

4. Subset Regression Estimators

Here, we study subset regression estimators, and again consider
normal data, Y ∼ F = N(θ0, σ

2I) in (1). Our family of estima-
tors is de!ned by regression onto subsets of the columns of a
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predictor matrix X ∈ Rn×p, that is,

θ̂s(Y ) = PXsY for s ∈ S, (39)

where each s = { j1, . . . , jps} is an arbitrary subset of {1, . . . , p}
of size ps, Xs ∈ Rn×ps denotes the columns of X indexed by ele-
ments of s, PXs denotes the projection matrix onto the column
space of Xs, and S denotes a collection of subsets of {1, . . . , p}.
Wewill abbreviatePs = PXs , andwewill assume, without any real
loss of generality, that for each s ∈ S, the matrix Xs has full col-
umn rank (otherwise, simply replace each instance of ps below
with rs = rank(Xs)).

SURE in (6) is now the familiarCp criterion

Êrrs(Y ) = ‖Y − PsY‖22 + 2σ 2ps. (40)

As S is discrete, it is not generally possible to express the mini-
mizer ŝ(Y ) of the above criterion in closed form, and so, unlike
the previous section, not generally possible to analytically char-
acterize the excess degrees of freedom of the SURE-tuned sub-
set regression estimator θ̂ŝ. In what follows, we derive an upper
bound on the excess degrees of freedom, using elementary argu-
ments (note that our approach is roughly in line with the gen-
eral strategy of uniform deviations control, see the bound used
in (42)). Later in Section 5.4, we give a lower bound and a more
sophisticated upper bound, by leveraging a powerful tool from
Mikkelsen and Hansen (2016).

4.1. Upper Bounds for Excess Degrees of Freedom in
Subset Regression

Note that we can write the excess degrees of freedom as

edf (θ̂ŝ) = 1
σ 2E

[
(Pŝ(Y )(Y ))T (Y − θ0)

]
− E(pŝ(Y ))

= 1
σ 2E‖Pŝ(Y )Z‖22 − E(pŝ(Y )), (41)

where Z = Y − θ0 ∼ N(0, σ 2I). Furthermore, de!ning Ws =
‖PsZ‖22/σ 2 ∼ χ2

ps for s ∈ S, we have

edf (θ̂ŝ) = E(Wŝ(Y ) − pŝ(Y )) ≤ E
[
max
s∈S

(Ws − ps)
]
. (42)

The next lemma provides a useful upper bound for the right-
hand side above.

Lemma 4.1. Let Ws ∼ χ2
ps , s ∈ S. This collection need not be

independent. Then for any 0 ≤ δ < 1,

E
[
max
s∈S

(Ws − ps)
]

≤ 2
1 − δ

log
∑

s∈S
(δe1−δ )−ps/2. (43)

The proof of the above lemma relies only on the moment
generating function of the chi-squared distribution, and so our
assumption of normality for the dataY could be weakened. For
example, a similar result to that in Lemma 4.1 can be derived
whenWs, s ∈ S each have subexponential tails (generalizing the
chi-squared assumption). For simplicity, we do not pursue this.

Combining (42) and (43) gives an upper bound on the excess
degrees of freedom of θ̂ŝ,

edf (θ̂ŝ) ≤ 2
1 − δ

log
∑

s∈S
(δe1−δ )−ps/2. (44)

To make this more explicit, we denote by |S| the size of S, and
pmax = maxs∈S ps, and consider a simple upper bound for the
right-hand side in (44),

edf (θ̂ŝ) ≤ 2
1 − δ

log |S| + pmax

(
log(1/δ)

1 − δ
− 1

)
. (45)

This simpli!cation should be fairly tight, that is, the right-
hand side in (45) should be close to that in (44), when |S| and
maxs∈S ps − mins∈S ps are both not very large. Now, any choice
of 0 ≤ δ < 1 can be used to give a valid bound in (45). As an
example, taking δ = 9/10 gives

edf (θ̂ŝ) ≤ 20 log |S| + 0.054pmax.

By (20), the risk reformulation of the result in Theorem 2.1, we
get the !nite-sample risk bound

Risk(θ̂ŝ) ≤ ‖(I − Ps0 )θ0‖22 + σ 2(ps0 + 0.108pmax) + 40σ 2 log |S|,

where we have explicitly written the oracle risk as Risk(θ̂s0 ) =
‖(I − Ps0 )θ0‖22 + σ 2ps0 .

4.2. Oracle Inequality for SURE-tuned Subset Regression

The optimal choice of δ, that is, the choice giving the tightest
bound in (45) (and so, the tightest risk bound), will depend on
|S| and pmax. The analytic form of such a value of δ is not clear
from the form of the bound in (45). But, we can adopt an asymp-
totic perpsective: if log |S| is small compared to the oracle risk
Risk(θ̂s0 ), and pmax is not too large compared to the oracle risk,
then (45) implies edf (θ̂ŝ) = o(Risk(θ̂s0 )). We state this formally
next.
Theorem 4.1. Assume that Y ∼ N(θ0, σ

2I), and that there is
a sequence an > 0, n = 1, 2, 3, . . . with an → 0 as n → ∞,
such that the risk of the oracle subset regression estimator θ̂s0
satis!es

1
an

log |S|
Risk(θ̂s0 )

→ 0 and an
pmax

Risk(θ̂s0 )
→ 0 as n → ∞.

(46)
Then, there is a sequence 0 ≤ δn < 1, n = 1, 2, 3, . . .with δn →
1 as n → ∞, such that

[
2

1 − δn
log |S| + pmax

(
log(1/δn)
1 − δn

− 1
)]

/Risk(θ̂s0 ) → 0

as n → ∞.

Plugging this into the bound in (45) shows that
edf (θ̂ŝ)/Risk(θ̂s0 ) → 0, so ExOpt(θ̂ŝ)/Risk(θ̂s0 ) → 0 as well,
establishing the oracle inequality (17) for the SURE-tuned
subset regression estimator.

The assumptions (46) may look abstract, but are not strong
and are satis!ed under fairly simple conditions. For exam-
ple, if we assume that ‖(I − Ps0 )θ0‖22 = 0 (which means there
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is no bias), and as n → ∞ (with σ 2 constant) it holds that
(log |S|)/ps0 → 0 and pmax/ps0 = O(1) (whichmeans the num-
ber |S| of candidate models is much smaller than 2p0 , and we are
not searching over much larger models than the oracle), then it
is easy to check (46) is satis!ed, say, with an =

√
(log |S|)/ps0 .

Assumptions (46) can accommodate more general settings, for
example, in which there is bias, or in which pmax/ps0 diverges,
as long as these quantities scale at appropriate rates.

Theorem 4.1 establishes the classical oracle inequality (17)
for the SURE-tuned subset regression estimator, which is noth-
ing more than the Cp-tuned (or AIC-tuned, as σ 2 is assumed
to be known) subset regression estimator. This of course is not
really a new result; cf. classical theory on model selection in
regression, as in Corollary 2.1 of Li (1987). This author estab-
lished a result similar to (17) for theCp-tuned subset regression
estimator, chosen over a family of nested regressionmodels, and
showed asymptotic equivalence of the attained loss to the oracle
loss (rather than the attained and oracle risks), in probability.

We remark that a similar analysis to that above, where we
upper bound the excess degrees of freedom and risk, should be
possible for a general discrete family of linear smoothers, beyond
linear regression estimators. This would cover, for example, s-
nearest neighbor regression estimators across various choices
s = 1, 2, 3, . . . , |S|. The linear smoother setting is studied by Li
(1987), andwouldmake for another demonstration of our excess
optimism theory, but we do not pursue it.

5. Characterizing Excess Degrees of Freedomwith
(Extensions of) Stein’s Formula

In this section, we keep the normal assumption, Y ∼ F =
N(θ0, σ

2I) in (1), and we move beyond individual families of
estimators, by studying the use of Stein’s formula (and exten-
sions thereof) for calculating excess degrees of freedom, in an
e"ort to understand this quantity in some generality.

5.1. Stein’s Formula, for Smooth Estimators

We consider the case in which S ⊆ R is an open interval, so θ̂s is
de!ned over a continuously-valued (rather than a discrete) tun-
ing parameter s ∈ S. We make the following assumption.

Assumption 5.1. The map ŝ : Rn → S is di"erentiable.

It is worth noting that Assumption 5.1 seems strong. In par-
ticular, it is not implied by the SURE criterion in (6) being
smooth in (Y, s) jointly, that is, by the map G : Rn × S → R,
de!ned by

G(Y, s) = ‖Y − θ̂s(Y )‖22 + 2σ 2d̂f s(Y ), (47)

being smooth. When G(Y, ·) is multimodal over s ∈ S, its mini-
mizer ŝ(Y ) can jump discontinuously asY varies, even ifG itself
varies smoothly. Figure 1 provides an illustration of this phe-
nomenon. Notably, the SURE criterion for the family of shrink-
age estimators we considered in Section 3.1 (as well as Section
3.3) was unimodal, and Assumption 5.1 held in this setting;
however, we see no reason for this to be true in general. Thus, we
will use Assumption 5.1 to develop a characterization of excess
degrees of freedom, shedding light on the nature of this quantity,

but should keep in mind that our assumptions may represent a
somewhat restricted setting.

It is now helpful to de!ne a “parent” mapping '̂ : Rn ×
S → Rn by θ̂s = '̂(·, s) for each s ∈ S, and h : Rn → Rn × S
by h(Y ) = (Y, ŝ(Y )). In this notation, the SURE-tuned estima-
tor is given by the composition θ̂ŝ = '̂ ◦ h. The following is our
assumption on '̂.

Assumption 5.2. The function '̂ : Rn × S → Rn is dif-
ferentiable and satis!es the integrability condition
E[sups∈S

∑n
i=1 |∂'̂i(Y, s)/∂Yi|] < ∞.

Di"erentiability of both '̂ and h implies di"erentiabil-
ity of their composition θ̂ŝ = '̂ ◦ h; in addition, we know
from the integrability condition in Assumption 5.2 that
E[
∑n

i=1 |∂θ̂ŝ,i(Y )/∂Yi|] < ∞, so Stein’s formula is applicable to
θ̂ŝ.

Finally, we consider the following assumption on the SURE
criterion G in (47).

Assumption 5.3. The map G : Rn × S → R is twice di"eren-
tiable, and for each pointY ∈ Rn, the minimizer ŝ(Y ) ofG(Y, ·)
is the unique value satisfying

∂G
∂s

(Y, ŝ(Y )) = 0, (48)

∂2G
∂s2

(Y, ŝ(Y )) > 0. (49)

As in our comment following Assumption 5.1, wemust point
out that Assumption 5.3 seems quite strong, and as far as we
can tell, in a generic problem setting there seems to be nothing
preventingG(Y, ·) from beingmultimodal, which would violate
Assumption 5.3. Still, we will use it to develop insight on the
nature of excess degrees of freedom.

The following is the main result of this subsection.

Theorem 5.1. Under Y ∼ N(θ0, σ
2I) and Assumptions 5.1 and

5.2, the excess degrees of freedom of the SURE-tuned estimator
θ̂ŝ is given by

edf (θ̂ŝ) = E
( n∑

i=1

∂'̂i

∂s
(Y, ŝ(Y ))

∂ ŝ
∂Yi

(Y )

)

. (50)

Additionally, under Assumption 5.3, it is given by

edf (θ̂ŝ) = −E
[(

∂2G
∂s2

(Y, ŝ(Y ))

)−1

×
n∑

i=1

(
∂'̂i

∂s
(Y, ŝ(Y ))

∂2G
∂Yi∂s

(Y, ŝ(Y ))

)]
. (51)

The advantage of (51) over (50) is that the former is in gen-
eral easier to compute. Computing ∂'̂i/∂s, i = 1, . . . , n in (50)
is often easy, at least when the estimator θ̂s (for !xed s) is avail-
able in closed form. But computing ∂ ŝ/∂Yi, i = 1, . . . , n in (50)
is typically much harder; even for simple problems, the SURE-
optimal tuning parameter ŝ often cannot be written in the closed
form.

A straightforward calculation shows that, for the classes of
shrinkage estimators in Sections 3.1 and 3.3, both (50) and
(51) match the excess degrees of freedom results derived in
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these sections. In principle, whenever its assumptions hold,
Theorem 5.1 gives explicitly computable unbiased estimators
for excess degrees of freedom, that is, the quantities inside the
expectations in (50) and (51). It is unclear to us (as we have
already discussed) towhat extent these assumptions hold in gen-
eral, but we can still use the results, particularly (51) to derive
some helpful intuition on excess degrees of freedom. Roughly
speaking:! if (on average) (∂2G/∂s2)(Y, ŝ(Y )) is large, that is, G(Y, ·)

is sharply curved around its minimum, that is, SURE
sharply identi!es the optimal tuning parameter value ŝ(Y )

given Y , then this drives the excess degrees of freedom to
be smaller;! if (on average) |(∂2G/∂Yi∂s)(Y, ŝ(Y ))| is large, that is,
|(∂G/∂s)(Y, ŝ(Y ))| varies quickly withYi, that is, the func-
tion whose root in (48) determines ŝ(Y ) changes quickly
with Yi, then this drives the excess degrees of freedom to
be larger;! the pair of terms in the summand in (51) tend to have
opposite signs (their speci!c signs are a re$ection of the
tuning parameterization associatedwith s ∈ S), which can-
cels out the −1 in front, and makes the excess degrees of
freedom positive.

5.2. Extensions of Stein’s Formula, for Nonsmooth
Estimators

When an estimator has severe enough discontinuities, it will not
be weakly di"erentiable, and then Stein’s formula (10) cannot be
directly applied. This is especially relevant to the topic of our
article, as the SURE-tuned estimator θ̂ŝ can itself be discontin-
uous in Y even if each member of the family {θ̂s : s ∈ S} is con-
tinuous inY (due to discontinuities in the SURE-optimal tuning
parametermap ŝ). Note, this will always be the case for a discrete
tuning parameter set S; it can also be the case for a continuous
tuning parameter set S, recall Figure 1.

Fortunately, extensions of Stein’s formula have been recently
developed, to account for discontinuities of certain types. Tib-
shirani (2015) established an extension for estimators that are
piecewise smooth. To de!ne this notion of piecewise smooth-
ness precisely, we must introduce some notation. Given an esti-
mator θ̂ : Rn → Rn, we write θ̂i( · ,Y−i) : R → R for the ith
component function θ̂i of θ̂ acting on the ith coordinate of
the input alone, with all other n − 1 coordinates !xed at Y−i.
We also write D(θ̂i( · ,Y−i)) to denote the set of dicontinu-
ities of the map θ̂i( · ,Y−i). In this notation, the estimator θ̂

is said to be p-almost di!erentiable if, for each i = 1, . . . , n
and (Lebesgue) almost every Y−i ∈ Rn−1, the map θ̂i( · ,Y−i) :
R → R is absolutely continuous on each of the open intervals
(−∞, δ1), (δ2, δ3), . . . , (δm,∞), where δ1 < δ2 < · · · < δm
are the sorted elements of D(θ̂i( · ,Y−i)), assumed to be a !nite
set. For p-almost di"erentiable θ̂ , Tibshirani (2015) proved that

df (θ̂ ) = E
[ n∑

i=1

∂θ̂i

∂Yi
(Y )

]

+ 1
σ
E
[ n∑

i=1

∑

δ∈D(θ̂i( · ,Y−i ))

φ

(
δ − θ0,i

σ

)[
θ̂i(δ,Y−i)+ − θ̂i(δ,Y−i)−

]]
,

(52)

under some regularity conditions that ensure the second term
on the right-hand side is well-de!ned. Above, we denote
one-sided limits from above and from below by θ̂i(δ,Y−i)+ =
limt↓δ θ̂i(t,Y−i) and θ̂i(δ,Y−i)− = limt↑δ θ̂i(t,Y−i), respectively,
for the map θ̂i(·,Y−i), i = 1, . . . , n, and we denote by φ the
univariate standard normal density.

A di#culty with (52) is that it is often hard to compute or
characterize the extra term on the right-hand side. Mikkelsen
and Hansen (2016) derived an alternate extension of Stein’s for-
mula for piecewise Lipschitz estimators. While this setting is
more restricted than that in Tibshirani (2015), the resulting
characterization is more “global” (instead of being based on dis-
continuities along the coordinate axes), and thus it can be more
tractable in some cases. Formally,Mikkelsen andHansen (2016)
considered an estimator θ̂ : Rn → Rn with associated regular
open sets Uj ⊆ Rn, j = 1, . . . , J whose closures cover Rn (i.e.,
∪J

j=1Ūj = Rn), such that each map θ̂ j := θ̂ |Uj (the restriction of
θ̂ toUj) is locally Lipschitz continuous. The authors proved that,
for such an estimator θ̂ ,

df (θ̂ ) = E
[ n∑

i=1

∂θ̂i

∂Yi
(Y )

]

+1
2
∑

j 1=k

∫

Ū j∩Ūk

〈
θ̂ k(y) − θ̂ j(y), η j(y)

〉
φθ0,σ 2I(y) dHn−1(y),

(53)

again under some further regularity conditions that ensure the
second term on the right-hand side is well-de!ned. Above, η j(y)
denotes the outer unit normal vector to ∂Uj (the boundary of
Uj) at a point y, j = 1, . . . , J, φθ0,σ 2I is the density of a normal
variate with mean θ0 and covariance σ 2I, andHn−1 denotes the
(n − 1)-dimensional Hausdor"measure.

Our interest in (52), (53) is in applying these extensions to
θ̂ = θ̂ŝ, the SURE-tuned estimator de!ned from a family {θ̂s :
s ∈ S}. A general formula for excess degrees of freedom, follow-
ing from (52) or (53), would be possible, but also complicated
in terms of the required regularity conditions. Here is a high-
level discussion, to reiterate motivation for (52), (53) and out-
line their applications. We discuss the discrete and continuous
tuning parameter settings separately.! When the tuning parameter s takes discrete values (i.e., S

is a discrete set), extensions such as (52), (53) are needed
to characterize excess degrees freedom, because the esti-
mator θ̂ŝ is generically discontinuous and Stein’s origi-
nal formula cannot be used. In the discrete setting, the
!rst term on the right-hand side of both (52), (53) (when
θ̂ = θ̂ŝ) is E[d̂f ŝ(Y )(Y )], in the notation of (15), and thus
the second term on the right-hand side of either (52),
(53) (when θ̂ = θ̂ŝ) gives precisely the excess degrees of
freedom.! When s takes continuous values (i.e., S is a connected sub-
set of Euclidean space), extensions as in (52), (53) are not
strictly speaking always needed, though it seems likely to
us that they will be needed in many cases, because the
SURE-tuned estimator θ̂ŝ can inherit discontinuities from
the SURE-optimal parametermap ŝ (recall Figure 1). In the
continous tuning parameter case, both the !rst and second
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terms on the right-hand sides of (52), (53) (when θ̂ = θ̂ŝ)
can contribute to excess degrees of freedom; that is, excess
degrees of freedom is given by the second term plus any
terms left over from applying the chain-rule for di"erenti-
ation in the !rst term.

Over the next two subsections, we demonstrate the useful-
ness of the extensions in (52) and (53) by applying them in two
speci!c settings.

5.3. Soft-Thresholding Estimators

Consider the family of soft-thresholding estimators with com-
ponent functions

θ̂s,i(Y ) = sign(Yi)(|Yi| − s)+, i = 1, . . . , n, for s ≥ 0.
(54)

In this setting, SURE in (6) is

Êrrs(Y ) =
n∑

i=1

min{Y 2
i , s2} + 2σ 2|{i : |Yi| ≥ s}|. (55)

Soft-thresholding estimators, like the shrinkage estimators of
Section 3.1, have been studied extensively in the statistical lit-
erature; some key references that study risk properties of soft-
thresholding estimators are Donoho and Johnstone (1994, 1995,
1998), and Chapters 8 and 9 of Johnstone (2015) give a thorough
summary.

The extension of Stein’s formula from Tibshirani (2015), as
given in (52), can be used to prove that the excess degrees of free-
dom of the SURE-tuned soft-thresholding estimator is nonneg-
ative. The key realization is as follows: if a component function
θ̂ŝ,i of the SURE-tuned soft-thresholding estimator jumps dis-
continuously as we move Y along the ith coordinate axes, then
the sign of this jump must match the direction in which Yi is
moving, thus the latter term on the right-hand side of (52) is
always nonnegative.

Theorem 5.2. The SURE-tuned soft-thresholding estimator θ̂ŝ is
p-almost di"erentiable. Moreover, for each i = 1, . . . , n, each
Y−i ∈ Rn−1, and each discontinuity point δ of θ̂ŝ(·,Y−i ),i(·,Y−i) :
R → R, it holds that

[
θ̂ŝ(δ,Y−i ),i(δ,Y−i)

]
+ −

[
θ̂ŝ(δ,Y−i ),i(δ,Y−i)

]
− ≥ 0. (56)

Therefore, when Y ∼ N(θ0, σ
2I), we have from (52) that

edf (θ̂ŝ) ≥ 0 and so df (θ̂ŝ) ≥ E
∣∣{i : |Yi| ≥ ŝ(Y )

}∣∣.

The proof of Theorem 5.2 examines the discontinuities in the
SURE-tuned soft-thresholding estimator; in particular, it shows
that for each i = 1, . . . , n andY−i ∈ Rn, themap θ̂ŝ(·,Y−i ),i(·,Y−i)

has atmost two discontinuity points, and at a discontinuity point
δ, the magnitude of the jump is itself bounded by δ. This can
be used to show that edf (θ̂ŝ) ≤

√
2/(πe)n ≈ 0.484n in the null

case, θ0 = 0. We note that this upper bound is likely very loose
(e.g., see Figure 3, where the excess degrees of freedom is seen
empirically to scale as log n). A tighter upper bound should be
possible with more re!ned calculations, but we do not pursue
this here.

5.4. Subset Regression Estimators, Revisited

We return to the setting of Section 4, that is, we consider the
family of subset regression estimators in (39), which we can
abbreviate by θ̂s(Y ) = PsY , s ∈ S, using the notation of the latter
section. In Section 4.1, recall, we derived upper bounds on the
excess degrees of freedom of the SURE-tuned subset regres-
sion estimator edf (θ̂ŝ). Here, we apply the extension of Stein’s
formula from Mikkelsen and Hansen (2016), as stated in (53),
to represent excess degrees of freedom for SURE-tuned subset
regression in an alternative and (in principle) exact form. The
calculation of the second-term on the right-hand side in (53)
for the SURE-tuned subset regression estimator, which yields
the result (58) in the next theorem, can already be found in
Mikkelsen and Hansen (2016) (in their study of best sub-
set selection). A complete proof is given in the supplement
nonetheless.
Theorem 5.3 (Mikkelsen and Hansen 2016). The SURE-tuned
subset regression estimator θ̂ŝ is piecewise Lipschitz (in fact,
piecewise linear) over regular open setsUs, s ∈ S, whose closures
cover Rn. For s, t ∈ S, the outer unit normal vector ηs(y) to ∂Us
at a point y ∈ Ūs ∩ Ūt is given by

ηs(y) = (Pt − Ps)y
‖(Pt − Ps)y‖2

. (57)

Therefore, whenY ∼ N(θ0, σ
2I), we have from (53) that

edf (θ̂ŝ) = 1
2
∑

s1=t

∫

Ūs∩Ūt

‖(Pt − Ps)y‖2 φθ0,σ 2I(y) dHn−1(y).

(58)
An important implication is edf (θ̂ŝ) ≥ 0, which implies that
df (θ̂ŝ) ≥ E(pŝ(Y )).

While the integral (58) is hard to evaluate in general, it is
somewhat more tractable in the case of nested regression mod-
els. In the present setting each s ∈ S, recall, is identi!ed with a
subset of {1, . . . , p}. We say the collection S is nested if for each
pair s, t ∈ S, we have either s ⊆ t or t ⊆ s. The next result shows
that for a nested collection of regression models, the integral
expression (58) for excess degrees of freedom simpli!es consid-
erably, and can be upper bounded in terms of surface areas of
balls under an appropriate Gaussian probability measure.

Before stating the result, it helps to introduce some nota-
tion. For a matrix A, we write Aj:k as shorthand for A{ j, j+1,...,k},
that is, the submatrix given by extracting columns j through
k. Likewise, for a vector a, we write a j:k as shorthand for
(a j, a j+1, . . . , ak). When s is identi!ed with a nonempty sub-
set {1, . . . , j}, we write Ps,Us, ηs as Pj,Uj, η j respectively, and
use P⊥

j for the orthogonal projector to Pj . Finally, we refer to the
Gaussian surface measure +d , de!ned over (Borel) sets A ⊆ Rd

as

+d(A) = lim inf
δ→0

P(Z ∈ Aδ \ A)

δ
,

where Z ∼ N(0, I) denotes a d-dimensional standard normal
variate, and Aδ = A + Bd(0, δ) is the Minkowski sum of A
and the d-dimensional ball Bd(0, δ) centered at the origin with
radius δ. For a set A with smooth boundary ∂A, an equivalent
de!nition is +d(A) =

∫
∂A φ0,I(x) dHd−1(x), where φ0,I is the
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density of Z, and Hd−1 is the (d − 1)-dimensional Hausdor"
measure. Helpful references on Gaussian surface area include
Ball (1993), Nazarov (2003), Klivans, O’Donnell, and Servedio
(2008). We now state our main result of this subsection.

Theorem 5.4. Assume that Y ∼ N(θ0, σ
2I), and that all models

in the collection S are nested. Then, the excess degrees of free-
dom of the SURE-tuned subset regression estimator θ̂ŝ is

edf (θ̂ŝ) =
√
2σ
∑

s⊆t

√
pt − ps

∫

Ūs∩Ūt

φθ0,σ 2I(y) dHn−1(y).

(59)
Now,without a loss of generality (otherwise, the only real adjust-
ment is notational), let us identify each swith a subset {1, . . . , j}.
Then, the excess degrees of freedom is upper bounded by

edf (θ̂ŝ) ≤
p∑

d=1

√
2d(d + 1) max

j=1,...,d
+d

(
Bd
(
µ( j+1):( j+d),

√
2d
))

,

(60)
where µ = VTθ0/σ , and V ∈ Rn×p is an orthogonal matrix
with columns v j = P⊥

j−1Xj/‖P⊥
j−1Xj‖2, j = 1, . . . , p (where

we let P0 = 0 for notational convenience). Also, recall that
+d(Bd(u, r)) denotes the d-dimensional Gaussian surface area
of a ball Bd(u, r) centered at u with radius r. When θ0 = 0, the
result in (60) can be sharpened and simpli!ed, giving

edf (θ̂ŝ) ≤
p∑

d=1

√
2d
(
1 + 1

d

)
+d
(
Bd(0,

√
2d)

)
< 10. (61)

Though it is established in a restricted setting, θ0 = 0, the
result in (61) is quite interesting, as it shows that the excess
degrees of freedom of the SURE-tuned subset regression is
bounded by the constant 10, and therefore its excess optimism
is bounded by the constant 20σ 2, regardless of the number of
predictors p in the regression problem.

The derivation of (61) from (60) relies on two key facts: (i)
the null case, θ0 = 0, admits a kind of symmetry that allows us to
apply a classic result in combinatorics (the gas stations problem)
to compute the exact probability of a collection of chi-squared
inequalities, which leads to a reduction in the factor of d + 1 in
each summand of (60) to a factor of 1 + 1/d in each summand
of (61); and (ii) the balls in the null case, in the summands of
(61), are centered at the origin, so their Gaussian surface areas
can be explicitly computed as in Ball (1993), Klivans, O’Donnell,
and Servedio (2008).

Neither fact is true in the nonnull case, θ0 1= 0, making it
more di#cult to derive a sharp upper bound on excess degrees
of freedom.We !nish with a couple remarks on the nonnull set-
ting; more serious investigation of explicitly bounding and/or
improving (60) is left to future work.

Remark 5.1 (Nonnull case: two models). When our collection is
composed of just two nested models that are separated by a sin-
gle variable, that is, S = {{1, . . . , p− 1}, {1, . . . , p}}, straight-
forward inspection of the proof of Theorem 5.3 reveals that
(60) becomes edf (θ̂ŝ) =

√
2+1(B1(vT

2 θ0/σ,
√
2)) (i.e., note the

equality), where v2 = P⊥
p−1Xp/‖P⊥

p−1Xp‖2. The Gaussian surface
measure is trivial to compute here (under an arbitrary mean θ0)
because it reduces to two evaluations of the Gaussian density,

and thus we see that

edf (θ̂ŝ) =
√
2φ
(√

2 − vT
2 θ0/σ

)
+

√
2φ
(√

2 + vT
2 θ0/σ

)
,

where φ is the standard (univariate) normal density.When θ0 =
0, the excess degrees of freedom is 2

√
2φ(

√
2) ≈ 0.415. For

general θ0, it is upper bounded by maxu∈R
√
2φ(

√
2 − u) +√

2φ(
√
2 + u) ≈ 0.575.

Remark 5.2 (Nonnull case: general bounds). For an arbitrary col-
lection S of nested models and arbitrary mean θ0, a very loose
upper bound on the right-hand side in (60) is

√
2pp(p+ 1),

which follows as the Gaussian surface measure of any ball is at
most 1, as shown in Klivans, O’Donnell, and Servedio (2008).
Under restrictions on θ0, tighter bounds on the Gaussian sur-
face measures of the appropriate balls should be possible. Fur-
thermore, the multiplicative factor of d + 1 in each summand
of (60) is also likely larger than it needs to be; we note that an
alternate excess degrees of freedom bound to that in (60) (fol-
lowing from similar arguments) is

edf (θ̂ŝ) ≤
√
2
∑

j<k

√
k − j P

(
Wj(‖µ1: j‖22) > 2( j − 1)

)

×P
(
Wp−k(‖µ(k+1):p‖22) < 2(p− k)

)
·

×+k− j

(
Bk− j

(
µ( j+1):k,

√
2(k − j)

))
, (62)

where Wd(λ) denotes a chi-squared random variable, with
d degrees of freedom and noncentrality parameter λ. Sharp
bounds on the noncentral chi-squared tails could deliver a use-
ful upper bound on the right-hand side in (62); we do not expect
the !nal bound reduce to a constant (independent of p) as it did
in (61) in the null case, but it could certainly improve on the
results in Section 4.1, that is, the bound in (45), which is on the
order of pmax (the largest subset size in S).

6. Estimating Excess Degrees of Freedomwith the
Bootstrap

We discuss bootstrap methods for estimating excess degrees of
freedom. As we have thus far, we assume normality, Y ∼ F =
N(θ0, σ

2I) in (1), but in what follows this assumption is used
mostly for convenience,and can be relaxed (we can of course
replace the normal distribution in the parameteric bootstrap
with any known data distribution, or in general, use the residual
bootstrap). The main ideas in this section are fairly simple, and
follow naturally from standard ideas for estimating optimism
using the bootstrap, for example, Breiman (1992), Ye (1998),
Efron (2004).

6.1. Parametric Bootstrap Procedure

First, we descibe a parametric bootstrap procedure. We draw

Y ∗,b ∼ N(θ̂ŝ(Y )(Y ), σ 2I), b = 1, . . . ,B, (63)

whereB is some large number of bootstrap repetitions, for exam-
ple, B = 1000. Our bootstrap estimate for the excess degrees of
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freedom edf (θ̂ŝ) is then

êdf (Y ) = 1
B

B∑

b=1

1
σ 2

n∑

i=1

θ̂ŝ(Y ∗,b),i(Y ∗,b)(Y ∗,b
i − Ȳ ∗

i )

− 1
B

B∑

b=1

d̂f ŝ(Y ∗,b)(Y ∗,b), (64)

where we write Ȳ ∗
i = (1/B)

∑B
b=1Y

∗,b
i for i = 1, . . . , n, and d̂f s

is our estimator for the degrees of freedom of θ̂s, unbiased
for each s ∈ S. Note that in (64), for each bootstrap draw b =
1, . . .B, we compute the SURE-optimal tuning parameter value
ŝ(Y ∗,b) for the given bootstrap data Y ∗,b, and we compare the
sum of empirical covariances (!rst term) to the plug-in degrees
of freedom estimate (second term). We can express the de!ni-
tion of excess degrees of freedom in (15) as

edf (θ̂ŝ) = E
(

1
σ 2

n∑

i=1

θ̂ŝ(Y ),i(Y )(Yi − θ0,i)

)
− E[d̂f ŝ(Y )(Y )],

(65)
making it clear that (64) estimates (65). Fortuituously, the valid-
ity of the bootstrap approximation (64), as noted by Efron
(2004), does not depend on the smoothness of θ̂ŝ as a function
of Y . This makes it appropriate for estimating excess degrees of
freedom, even when θ̂ŝ is discontinuous (e.g., due to discontinu-
ities in the SURE-optimal parameter mapping ŝ), which can be
di#cult to handle analytically (recall Sections 5.2–5.4).

It should be noted, however, that typical applications of the
bootstrap for estimating optimism, as reviewed in Efron (2004),
consider low-dimensional problems, and it is not clear that (64)
will be appropriate for high-dimensional problems. Indeed, we
shall see in the examples in Section 6.2 that the bootstrap esti-
mate for the degrees of freedom df (θ̂ŝ),

d̂f (Y ) = 1
B

B∑

b=1

1
σ 2

n∑

i=1

θ̂ŝ(Y ∗,b),i(Y ∗,b)(Y ∗,b
i − Ȳ ∗

i ), (66)

can be poor in the high-dimensional settings being considered,
which is not unexpected. But (perhaps) unexpectedly, in these
same settings we will also see that the di!erence between (66)
and the baseline estimate (1/B)

∑B
b=1 d̂f ŝ(Y ∗,b)(Y ∗,b), that is, the

bootstrap excess degrees of freedom estimate, êdf (Y ) in (64),
can still be reasonably accurate.

Alternatives to the parametric bootstrap procedure are dis-
cussed in the supplement.

6.2. Simulated Examples

We empirically evaluate the excess degrees of freedom of the
SURE-tuned shrinkage estimator and the SURE-tuned soft-
thresholding estimator, across di"erent con!gurations for the
data generating distribution, and evaluate the performance of
the parametric bootstrap estimator for excess degrees of free-
dom. Speci!cally, our simulation setup can be described as
follows.! We consider 10 sample sizes n, log-spaced in between 10

and 5000.

! We consider 3 settings for the mean parameter θ0: the
null setting, where we set θ0 = 0; the weak sparsity set-
ting, where θ0,i = 4i−1/2 for i = 1, . . . , n; and the strong
sparsity setting, where θ0,i = 4 for i = 1, . . . , 6log n7 and
θ0,i = 0 for i = 6log n7 + 1, . . . , n.! For each sample size n and mean θ0, we draw observations
Y from the normal data model in (1) with σ 2 = 1, for a
total of 5000 repetitions.! For each Y , we compute the SURE-tuned estimate over
the shrinkage family in (21), and the SURE-tuned estimate
over the soft-thresholding family in (54).! For each SURE-tuned estimator θ̂ŝ, we record various esti-
mates of degrees of freedom, excess degrees of freedom,
and prediction error (details given below).

The simulation results are displayed in Figures 2 and 3; for
brevity, we only report on the null and weak sparsity settings for
the shrinkage family, and the null and strong sparsity settings
for the soft-thresholding family. All degrees of freedom, excess
degrees of freedom, and prediction error estimates (except the
Monte Carlo estimates) were averaged over the 5000 repetitions;
the plots all display the averages along with ±1 standard error
bars.

Figure 2 shows the results for the shrinkage family, with
the !rst row covering the null setting, and the second row the
weak sparsity setting. The left column shows the excess degrees
of freedom of the SURE-tuned shrinkage estimator, for grow-
ing n. Four types of estimates of excess degrees of freedom are
considered: Monte Carlo, computed from the 5000 repetitions
(drawn in black); the unbiased estimate from Stein’s formula,
that is, 2ŝ(Y )/(1 + ŝ(Y )) (in red); the bootstrap estimate (64)
(in green); and the observed (scaled) excess optimism, that is,
(‖Y ∗ − θ̂ŝ(Y )(Y )‖22 − Êrrŝ(Y )(Y ))/(2σ 2), where Y ∗ is an inde-
pendent copy of Y (in gray). The middle column shows similar
estimates, but for degrees of freedom; here, the naive estimate
is d̂f ŝ(Y )(Y ) = n/(1 + ŝ(Y )); the unbiased estimate is n/(1 +
ŝ(Y )) + 2ŝ(Y )/(1 + ŝ(Y )); the naive bootstrap estimate is the
second term in (64); and the bootstrap estimate is the !rst term
in (64), that is, as given in (66). Finally, the right column shows
the analogous quantities, but for estimating prediction error.
The error metric is normalized by the sample size n for visu-
alization purposes.

We can see that the unbiased estimate of excess degrees of
freedom is quite accurate (i.e., close to the Monte Carlo gold
standard) throughout. The bootstrap estimate is also accurate
in the null setting, but somewhat less accurate in the weak spar-
sity setting, particularly for large n. However, comparing it to
the observed (scaled) excess optimism—which relies on test data
and thus may not be available in practice—the bootstrap esti-
mate still appears reasonable accurate, andmore stable.While all
estimates of degrees of freedom are quite accurate in the null set-
ting, we can see that the two bootstrap degrees of freedom esti-
mates are far too small in the weak sparsity setting. This can be
attributed to the high-dimensionality of the problem (estimating
nmeans from n observations). Fortuituously, we can see that the
di!erence between the bootstrap and naive bootstrap degrees of
freedom estimates, that is, the bootstrap excess degrees of free-
dom estimate, is still relatively accurate even when the original
two are so highly inaccurate. Lastly, the error plots show that
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Figure . Simulation results for SURE-tuned shrinkage.

the correction for excess optimism is more signi!cant (i.e., the
gap between the naive error estimate and observed test error is
larger) in the null setting than in the weak sparsity setting.

Figure 3 shows the results for the soft-thresholding fam-
ily. The layout of plots is the same as that for the shrinkage
family (note that the unbiased estimates of excess degrees
of freedom and of degrees of freedom are not available for

soft-thresholding). The summary of results is also similar: we
can see that the bootstrap excess degrees of freedom estimate is
fairly accurate in general, and less accurate in the nonnull case
with larger n. One noteworthy di"erence between Figures 2 and
3: for the soft-thresholding family, we can see that the excess
degrees of freedom estimates appear to be growing with n,
rather than remaining upper bounded by 2, as they are for the

Figure . Simulation results for SURE-tuned soft-thresholding.
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shrinkage family (recall also that this is clearly implied by the
characterization in (24)). However, the growth rate is slow: the
linear trend in the leftmost plots in Figure 3 suggests that the
excess degrees of freedom scales as log n (noting that the x-axis
is on a log scale).

7. Discussion

We have proposed and studied a concept called excess opti-
mism, in (14), which captures the added optimism of a SURE-
tuned estimator, beyond what is prescribed by SURE itself.
By construction, an unbiased estimator of excess optimism
leads to an unbiased estimator of the prediction error of the
rule tuned by SURE. Further motivation for the study of
excess optimism comes from its close connection to oracle
estimation, as given in Theorem 2.1, where we showed that
the excess optimism upper bounds the excess risk, that is, the
di"erence between the risk of the SURE-tuned estimator and
the risk of the oracle estimator. Hence, if the excess optimism
is shown to be su#ciently small next to the oracle risk, then
this establishes the oracle inequality (17) for the SURE-tuned
estimator.

Interestingly, excess optimism can be exactly characterized
for a family of shrinkage estimators, as studied in Section 3,
where we showed that the excess optimism (and hence the
excess risk) of a class of shrinkage estimators—in both simple
normal means and regression settings—is at most 4σ 2. For a
family of subset regression estimators, such a precise character-
ization is not possible, but we showed in Section 4 that upper
bounds on the excess optimism can be formed that imply the
oracle inequality (17) for the SURE-tuned (here, Cp-tuned)
subset regression estimator.

Characterizating excess optimism—equivalently excess
degrees of freedom, in (15), which is just a constant multiple
of the former quantity—is a di#cult task in general, due to
discontinuities that can exist in the SURE-tuned estimator.
Severe enough discontinuities will imply the SURE-tuned
estimator is not weakly di"erentiable and disallow the use of
Stein’s formula for estimating excess degrees of freedom. Section
5 discussed recently developed extensions of Stein’s formula
that handle certain types of discontinuities. As an example
application, we proved that one of these extensions can be
used to bound the excess optimism of the SURE-tuned subset
regression estimator, over a family of nested subsets, by 20σ 2, in
the null case when θ0 = 0. Finally, in Section 6, we showed that
estimation of excess degrees of freedom using the bootstrap is
conceptually straightforward, and appears to works reasonably
well (but, it tends to underestimate excess degrees of freedom in
high-dimensional settings with nontrivial signal present in θ0).

There are a number of interesting directions for extensions
of our work. Two such directions, on heteroscedastic data,
and alternative loss functions (other than squared loss), are
described in the supplement. We !nish here by noting an impli-
cation of some of our technical results in Sections 4.1 and 5.4 on
the degrees of freedom of the (Lagrangian version of the) best
subset selection estimator, de!ned by

β̂subset
λ (Y ) = argmin

β∈Rp
‖Y − Xβ‖22 + λ‖β‖0, (67)

where recall, the -0 norm is de!ned by ‖β‖0 =
∑p

j=1 1{β j 1= 0}.
Here λ ≥ 0 is a tuning parameter. The best subset selection esti-
mator in (67) can be seen as minimizing a SURE-like criterion,
cf. the SURE criterion in (40), where we de!ne the collection
S to contain all subsets of {1, . . . , p}, and we replace the multi-
plier 2σ 2 in (40) with a generic parameter, λ ≥ 0, used to weight
the complexity penalty. Combining Lemma 4.1 (for the upper
bound) and Theorem 5.3 (for the lower bound) provides the fol-
lowing result for best subset selection.

Theorem 7.1. Assume that Y ∼ N(θ0, σ
2I). For any !xed value

of λ ≥ 0, the degrees of freedom of the best subset selection esti-
mator in (67) satis!es

E‖β̂subset
λ (Y )‖0 ≤ df (X β̂subset

λ ) ≤ E‖β̂subset
λ (Y )‖0 + 2.29p.

(68)

In the language of Tibshirani (2015), the result in (68) proves
the search degrees of freedom of best subset selection—the
di"erence between df (X β̂subset

λ ) and E‖X β̂subset
λ (Y )‖0— is non-

negative, and at most 2.29p. Nonnegativity of search degrees
of freedom here was conjectured by Tibshirani (2015) but not
established in full generality (i.e., for general X); to be fair,
Mikkelsen and Hansen (2016) should be credited with estab-
lishing this nonegativity, since, recall, the lower bound in (68)
comes from Theorem 5.3, a result of these authors. The upper
bound in (68), as far as we can tell, is new. Though it may seem
loose, it implies that the degrees of freedom of the Lagrangian
form of best subset selection is at most 3.29p—in comparison,
Janson, Fithian, and Hastie (2015) proved that best subset
selection in constrained form (for a speci!c con!guration of
the mean particular θ0) has degrees of freedom approaching
∞ as σ → 0. This could be a reason to prefer the Lagrangian
formulation (67) over its constrained counterpart.

Supplementary Materials
The online supplementary materials contain additional proofs and models.
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