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About me and this lecture

I have been a professor at the Tepper School and interested in
convex optimization for many years (since last millennium).

This lecture is based on the following paper (revision coming up):

https://arxiv.org/abs/1812.10198

Please tell everyone you know about it.

Nice complement to Convex Optimization:

47-860, Convex Analysis, MW 3:30–5:20pm, mini-3, 2020.
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Preamble: (Euclidean) proximal methods
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Composite convex minimization

Consider the problem

min
x∈Rn

{f(x) + ψ(x)}

where f : Rn → R ∪ {∞} is differentiable and convex, and
ψ : Rn → R ∪ {∞} is closed and convex with dom(ψ) ⊆ dom(f).

Let Proxt be the following proximal map

Proxt(x) := argmin
z∈Rn

{
1

2t
‖z − x‖2 + ψ(z)

}
.
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Proximal gradient and accelerated proximal gradient

Consider the problem

min
x∈Rn

{f(x) + ψ(x)}.

Proximal gradient (PG)

pick tk > 0

xk+1 = Proxtk(xk − tk∇f(xk))

Accelerated proximal gradient (APG)

pick βk ≥ 0, tk > 0

yk = xk + βk(xk − xk−1)

xk+1 = Proxtk(yk − tk∇f(yk))
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Choice of stepsize
Consider the generic update

z+ = Proxt(y − t∇f(y)).

Observe

Proxt(y − t∇f(y))

= argmin
z∈Rn

{
f(y) + 〈∇f(y), z − y〉+

1

2t
‖z − y‖2 + ψ(z)

}
.

It makes sense to choose t so that z+ = Proxt(y− t∇f(y)) satisfies

f(z+) + ψ(z+) ≤ f(y) + 〈∇f(y), z+ − y〉+
1

2t
‖z+ − y‖2 + ψ(z+)

or equivalently

f(z+)− f(y)− 〈∇f(y), z+ − y〉 ≤
1

2t
‖z+ − y‖2.
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Bregman distance and L-smoothness

The latter condition can be restated as

Df (z+, y) ≤ 1

2t
‖z+ − y‖2

where Df is the following Bregman distance generated by f

Df (z, y) := f(z)− f(y)− 〈∇f(y), z − y〉.

L-smoothness

We say that f is L-smooth if for all z, y ∈ dom(f)

Df (z, y) ≤ L

2
‖z − y‖2.

In this case the condition at the top holds for t = 1/L.

Fact: f is L-smooth if ∇f is L-Lipschitz.
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Convergence of PG
PG: solve minx{f(x) + ψ(x)} via

xk+1 = Proxtk(xk − tk∇f(xk)).

Theorem

If the stepsizes tk satisfy

Df (xk+1, xk) ≤
1

2tk
‖xk+1 − xk‖2

then for all x̄ ∈ argminx{f(x) + ψ(x)} the PG iterates satisfy

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ ‖x0 − x̄‖2

2
∑k−1

i=0 ti
.

In particular, if each tk ≥ 1/L > 0 then

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ L · ‖x0 − x̄‖2

2k
.
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Convergence of APG

APG: solve minx{f(x) + ψ(x)} via

yk = xk + βk(xk − xk−1)

xk+1 = Proxtk(yk − tk∇f(yk))

Theorem (Beck & Teboulle 2009, Nesterov 2013)

Suppose βk = k−1
k+2 and the stepsizes tk satisfy tk ≥ 1/L > 0 and

Df (xk+1, yk) ≤
1

2tk
‖xk+1 − yk‖2.

Then for all x̄ ∈ argminx{f(x) + ψ(x)} the APG iterates satisfy

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ 2L · ‖x0 − x̄‖2

(k + 1)2
.
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Main story: Bregman proximal methods
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Proximal map again

Observe

Proxt(x− t∇f(x))

= argmin
y∈Rn

{
f(x) + 〈∇f(x), y − x〉+

1

2t
‖y − x‖2 + ψ(y)

}
= argmin

y∈Rn

{
〈∇f(x), y〉+ ψ(y) +

1

2t
‖y − x‖2

}
.

Also get O(1/k) and O(1/k2) convergence of proximal gradient
methods when f is L-smooth:

Df (y, x) ≤ L

2
‖y − x‖2.

The above can be relaxed and extended.
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Bregman proximal map
Let h : Rn → R ∪ {∞} be a diff. convex reference function.

The Bregman distance associated to h is

Dh(y, x) := h(y)− h(x)− 〈∇h(x), y − x〉.

This distance defines the following Bregman proximal map

g 7→ argmin
y∈Rn

{
〈g, y〉+

1

t
Dh(y, x) + ψ(y)

}
The previous Euclidean proximal map corresponds to the squared
Euclidean norm reference function

h(x) =
‖x‖2

2
 Dh(y, x) =

‖y − x‖2

2
.

What we just discussed for Euclidean proximal methods extends to
Bregman proximal methods.
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Bregman proximal gradient

Consider the problem

min
x∈Rn

{f(x) + ψ(x)},

and suppose h : Rn → R ∪ {∞} is a reference function.

Bregman proximal gradient (BPG)

pick tk > 0

xk+1 = argmin
z∈Rn

{
〈∇f(xk), z〉+

1

tk
Dh(z, xk) + ψ(z)

}
= argmin

z∈Rn

{
f(xk) + 〈∇f(xk), z − xk〉+

1

tk
Dh(z, xk) + ψ(z)

}
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Accelerated Bregman proximal gradient (ABPG)
(Gutman-P 2018)

Generate sequences xk, yk, zk for k = 0, 1, . . . as follows:

pick tk > 0

zk+1 = argmin
z∈Rn

{
〈∇f(yk), z〉+

1

tk
Dh(z, zk) + ψ(z)

}
xk+1 =

∑k
i=0 tizi+1∑k
i=0 ti

yk+1 =

∑k
i=0 tizi+1 + tk+1zk+1∑k+1

i=0 ti

Related work by Hanzely-Richtarik-Xiao (2018).
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Why use Bregman proximal methods?

The Bregman proximal template provides a lot more flexibility.

The additional freedom to choose h can facilitate the
computation of the proximal mapping. For instance for
x ∈ ∆n−1 := {x ∈ Rn+ : ‖x‖1 = 1} the map

g 7→ argmin
y∈∆n−1

{〈g, y〉+Dh(y, x)}

is simpler for h(x) =
∑n

i=1 xi log(xi) than for h(x) = ‖x‖2/2.

The usual L-smoothness assumption for convergence can be
replaced by a relative L-smoothness that holds more broadly.

15 / 35



Example: D-optimal design problem (min-vol enclosing ellipsoid)

min
x∈∆n−1

− log(det(HXHT))

where X = Diag(x) and H ∈ Rm×n with m < n.

Example: Poisson linear inverse problem

min
x∈Rn

+

DKL(b, Ax)

where b ∈ Rn++ and A ∈ Rm×n+ with m > n and DKL(·, ·) is the
Kullback-Leibler divergence, that is, the Bregman distance
associated to x 7→

∑n
i=1 xi log(xi).

We could tackle the above two problems via Euclidean proximal
methods. However, they are more amenable to Bregman proximal
methods with the Burg entropy reference function

h(x) = −
n∑
i=1

log(xi).
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Convergence rates of proximal gradient methods

Bregman proximal gradient (BPG)

Solve min
x∈Rn

{f(x) + ψ(x)} via

xk+1 = argmin
z∈Rn

{
〈∇f(xk), z〉+

1

tk
Dh(z, xk) + ψ(z)

}

BPG convergence

BPG has O(1/k) convergence when f is smooth relative to h, that
is, when

Df (y, x) ≤ L ·Dh(y, x)

for all x, y ∈ dom(f).
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Convergence rates of proximal gradient methods

Accelerated Bregman proximal gradient (ABPG)

Solve min
x∈Rn

{f(x) + ψ(x)} via

zk+1 = argmin
z∈Rn

{
〈∇f(yk), z〉+

1

tk
Dh(z, zk) + ψ(z)

}
xk+1 =

∑k
i=0 tizi+1∑k
i=0 ti

yk+1 =

∑k
i=0 tizi+1 + tk+1zk+1∑k+1

i=0 ti

ABPG convergence

ABPG has convergence O(1/kγ) if f is (L, γ)-smooth relative to h.
(To be defined soon.)
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Fenchel duality

Convex conjugate

For φ : Rn → R let φ∗ : Rn → R ∪ {∞} be defined via

φ∗(u) = sup
x∈Rn
{〈u, x〉 − φ(x)}.

Consider the primal problem

min
x
{f(x) + ψ(x)}.

The corresponding Fenchel dual problem is

max
u
{−f∗(u)− ψ∗(−u)}.

Observation

If f(x̄) + ψ(x̄) = −f∗(ū)− ψ∗(−ū) then x̄ and ū are optimal.

19 / 35



An approach to show convergence

Suppose an algorithm generates sequences xk, vk, wk such that

f(xk) + ψ(xk) ≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

for some sequence of “distance” functions dk : Rn → R.

Then for all x̄ ∈ argminx{f(x) + ψ(x)} we have

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ dk(x̄).

Punchline

For suitable tk the BPG and ABPG iterates satisfy the above for

dk(z) =
1∑k
i=0 ti

Dh(z, z0).
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A key lemma for Bregman proximal methods

Suppose yk, zk ∈ ri(dom(h)) ∩ dom(ψ), gk := ∇f(yk), and tk > 0
satisfy

zk+1 = argmin
z∈Rn

{
〈gk, z〉+

1

tk
Dh(z, zk) + ψ(z)

}
for k = 0, 1, 2, . . . .

Via the optimality conditions rewrite above as

gk + gψk +
1

tk
(∇h(zk+1)−∇h(zk)) = 0

for some gψk ∈ ∂ψ(zk+1).
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A key lemma for Bregman proximal methods
Let

vk :=

∑k
i=0 tigi∑k
i=0 ti

, wk :=

∑k
i=0 tig

ψ
i∑k

i=0 ti
.

Lemma

Suppose yk, zk, gk, g
ψ
k , tk and vk, wk are as above. Then∑k

i=0 ti(f(zi+1) + ψ(zi+1)−Df (zi+1, yi)) +Dh(zi+1, zi)∑k
i=0 ti

= −
∑k
i=0 ti(f

∗(gi) + ψ∗(gψi ))∑k
i=0 ti

− d∗k(−vk − wk)

≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

where

dk(z) :=
1∑k
i=0 ti

Dh(z, z0).
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Bregman proximal gradient (BPG)

In this case

xk+1 = argmin
z∈Rn

{
〈∇f(xk), z〉+

1

tk
Dh(z, xk) + ψ(z)

}

Theorem (Gutman-P 2018)

Suppose each ti is such that

Df (xi+1, xi) ≤
1

ti
Dh(xi+1, xi). (DC)

Then for x̄ ∈ argmin
x∈Rn

{f(x) + ψ(x)} the BPG iterates satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤ 1∑k
i=0 ti

Dh(x̄, x0).
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Proof of Theorem.

In this case we can apply Lemma to xk = yk = zk and get∑k
i=0 ti(f(xi+1) + ψ(xi+1)−Df (xi+1, xi)) +Dh(xi+1, xi)∑k

i=0 ti

≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk).

Next, (DC) implies

f(xk+1) + ψ(xk+1) ≤
∑k

i=0 ti(f(xi+1) + ψ(xi+1))∑k
i=0 ti

≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk).

Thus for all x̄ ∈ argminx∈Rn{f(x) + ψ(x)}

f(xk) + ψ(xk) ≤ f(x̄) + ψ(x̄) +
1∑k
i=0 ti

Dh(x̄, x0).
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Relative smoothness

Suppose f, h are convex and differentiable on Q. We say that f is
L-smooth relative to h on Q if for all x, y ∈ Q

Df (y, x) ≤ LDh(y, x).

(Nguyen 2012, Bauschke et al. 2017, Lu et al. 2018)

If f is L-smooth relative to h on dom(ψ) then (DC) holds for
ti = 1/L, i = 0, 1, . . . , k − 1 and BPG iterates satisfy

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ LDh(x̄, x0)

k
.

Recover results by Bauschke-Bolte-Teboulle (2017) and by
Lu-Freund-Nesterov (2018).

This extends the O(1/k) convergence rate of PG.
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Accelerated Bregman proximal gradient (ABPG)
Generate sequences xk, yk, zk as follows:

zk+1 = argmin
z∈Rn

{
〈∇f(yk), z〉+

1

tk
Dh(z, zk) + ψ(z)

}
xk+1 =

∑k
i=0 tizi+1∑k
i=0 ti

yk+1 =

∑k
i=0 tizi+1 + tk+1zk+1∑k+1

i=0 ti
.

By letting θk := tk∑k
i=0 ti

the last two equations can be rewritten as

xk+1 = (1− θk)xk + θkzk+1

yk+1 = (1− θk+1)xk+1 + θk+1zk+1

= xk+1 +
θk+1(1− θk)

θk
(xk+1 − xk)
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Accelerated Bregman proximal gradient (ABPG)

Theorem (Gutman-P 2018)

Suppose each ti and θi are such that

Df (xi+1, yi)− (1− θi)Df (xi, yi) ≤
θi
ti
Dh(zi+1, zi). (ADC)

Then for x̄ ∈ X̄ := argmin
x∈Rn

{f(x) +ψ(x)} the ABPG iterates satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤ 1∑k
i=0 ti

Dh(x̄, x0).

Proof.

Similar to previous one for BPG: use lemma & Fenchel duality.

———————————————————————————
Compare (ADC) condition for ABPG with (DC) condition for BPG:

Df (xi+1, xi) ≤
1

ti
Dh(xi+1, xi). (DC)
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Relative smoothness revisited

How much can we accelerate?

Choose tk > 0 or equivalently θk = tk∑k
i=0 ti

as large as possible so

that (ADC) holds. How large can we choose it?

(L, γ) relative smoothness

Say that f is (L, γ)-smooth relative to h on Q if for all
x, y, z, z̃ ∈ Q and θ ∈ [0, 1]

Df ((1− θ)x+ θz̃, (1− θ)x+ θz) ≤ LθγDh(z̃, z).

Observe

In Euclidean case L-relative smoothness yields (L, 2)-relative
smoothness. In general this does not hold but “almost”...
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Accelerated Bregman proximal gradient

Theorem (Gutman-P 2018)

Suppose f is (L, γ)-smooth relative to h on ri(dom(h)) ∩ dom(ψ)
for some L > 0 and γ > 0.

Then the stepsizes tk can be chosen so that the ABPG iterates
satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤
(

γ

k + γ

)γ
LDh(X̄, x0).

Recover iconic O(1/k2) rate when h(x) = 1
2‖x‖

2 and f is
L-smooth.
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Accelerated Bregman proximal gradient

For implementation purposes: pick θk = tk∑k
i=0 ti

as large as

possible so that (ADC) holds. Pick θk of the form

θk =
γk

k + γk

via backtracking on γk. If all γk ≥ γ > 0 then we get

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤
(

γ

k + γ

)γ
LDh(X̄, x0).

If we can do the above with γ = 2 we recover O(1/k2) rate. This
happens when h(x) = 1

2‖x‖
2.
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Numerical experiments

BPG-LS and ABPG-LS implementations

Line-search to choose tk in BPG so that (DC) holds.

Likewise for t0 and θk ∈ (0, 1) in ABPG to ensure (ADC).

Pick θk ∈ (0, 1) of the form θk = γk
k+γk

.

ABPG: use educated guess for t0 and θk = 2/(k + 2).

Problem instances

D-optimal design: minx∈∆n−1 − log(det(HXHT))

Poisson linear inverse: minx∈Rn
+
DKL(b, Ax)

In both cases use reference function

h(x) = −
n∑
i=1

log(xi).

Bregman proximal mappings are easily computable in both cases.
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Figure: Suboptimality gap for 100× 250 and 200× 300 random instances
of D-optimal design.

Figure: Suboptimality gap for 250× 100 and 300× 200 random instances
of the Poisson linear inverse problem.
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Figure: Sequence {γk : k = 1, 2, . . . } in ABPG-LS for typical instances of
D-design optimal problem.

Figure: Sequence {γk : k = 1, 2, . . . } in ABPG-LS for typical instances of
Poisson linear inverse problem.
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Conclusions

Analysis of Bregman proximal methods via Fenchel duality.
Key observation: algorithms generate xk, vk, wk such that

f(xk+1) + ψ(xk+1) ≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk).

Other related developments that we did not discuss:

Proximal subgradient method when f is non-differentiable
Linear convergence via restarting
Analogous results for conditional gradient

Current/future work

Saddle-point problems
Stochastic first-order methods
More computational experiments
Role of γ in accelerated Bregman proximal methods
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