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17.1 Barrier method: A quick recap

We first provide a quick recap to barrier method introduced in previous lectures, as we will compare it
against primal dual method in this note. The barrier method solves an optimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, · · · ,m
Ax = b

where f, hi, i = 1, · · · ,m, are convex and twice differentiable, and strong duality holds. We consider

min
x

tf(x) + φ(x)

subject to Ax = b

where φ is the log barrier function

φ(x) = −
m∑
i=1

log(−hi(x))

Let x?(t) be a solution to the barrier problem for a particular t > 0, and f? be the optimal value in original
problem. We can show m/t is a duality gap, so that

f(x?(t))− f? ≤ m/t

Motivates the barrier method, where we solve the barrier problem for increasing values of t > 0, until duality
gap satisfies m/t ≤ ε.

For fixed t(0) > 0, µ > 1, we use Newton’s method to compute x(0) = x?(t), the solution to barrier problem
at t = t(0). Then, for k = 1, 2, 3, · · · ,

• Solve the barrier problem at t = t(k), using Newton initialized at x(k−1), to yield x(k) = x?(t)

• Stop if m/t ≤ ε, else update t(k+1) = µt.

17-1



17-2 Lecture 17: October 17

17.2 Perturbed KKT conditions

Barrier method which iterates (x?(t), u?(t), v?(t)) can be motivated as solving the perturbed KKT conditions:

∇f(x) +

m∑
i=1

ui∇hi(x) +AT v = 0

ui · hi(x) = −(1/t)1, i = 1, · · · ,m
hi(x) ≤ 0, i = 1, · · · ,mAx = b

ui ≥ 0, i = 1, · · · ,m

Observe that the only difference between the perturbed and actual KKT conditions for the original problem
is the second line, which is replaced by

ui · hi(x) = 0, i = 1, · · · ,m

i.e., complementary slackness in actual KKT conditions.

We can combine the perturbed KKT conditions into a nonlinear system of equations, i.e.,

r(x, u, v) =

∇f(x) +Dh(x)Tu+AT v
−diag(u)h(x)− (1/t)1

Ax− b

 = 0

where

h(x) =

h1(x)
· · ·

hm(x)

 , Dh(x) =

∇h1(x)T

· · ·
∇hm(x)T


In previous lectures, we mentioned that Newton’s method can be viewed as a root-finder for a nonlinear
system F (y) = 0. In this context, approximating F (y + ∆y) ≈ F (y) +DF (y)∆y leades to

∆y = −(DF (y))−1F (y)

We apply this result to r(x, u, v) and leads to two versions of perturbed KKT.

17.2.1 Newton on perturbed KKT, v1

This approach starts from the relaxed complementary slackness. We first rearrange the equation and obtain

ui · hi(x) = −(1/t)1 =⇒ ui = −1/(thi(x)), i = 1, · · · ,m.

Plug in this expression and we reduce this nonlinear system to

r(x, v) =

[
∇f(x) +

∑m
i=1(− 1

thi(x)
)∇hi(x) +AT v

Ax− b

]
= 0

The gradient of the first line of r(x, v) w.r.t x and v is given by

Hbar(x) = ∇2f(x) +

m∑
i=1

1

thi(x)2
∇hi(x)∇hi(x)T +

m∑
i=1

(− 1

thi(x)
)∇2hi(x)

Then the Newton root-finding update (∆x,∆v) is given by[
Hbar(x) AT

A 0

] [
∆x
∆v

]
= −r(x, v)

which is precisely the KKT system solved by one iteration of Newton’s method for minimizing the barrier
problem.



Lecture 17: October 17 17-3

17.2.2 Newton on perturbed KKT, v2

The second version directly apply Newton’s root-finding update, without eliminating u as we did in v1.
Following notation in the slides, we define

rdual = ∇f(x) +Dh(x)Tu+AT v

rcent = −diag(u)h(x)− (1/t)t

rprim = Ax− b,

denoting the dual, central, and primal residuals at y = (x, u, v). Taking gradient of each entry in r(x, u, v)
w.r.t x, u, v respectively, we attain the root finding update ∆y = (∆x,∆u,∆v) Hpd(x) Dh(x)T AT

−diag(u)Dh(x) −diag(h(x)) 0
A 0 0

∆x
∆u
∆v

 = −

rdualrcent
rprim


where

Hpd(x) = ∇2f(x) +

m∑
i=1

ui∇2hi(x).

The v2 is precisely the primal-dual interior point method. Some salient points we draw from v1 and v2:

• In primal-dual interior-point method (v2), the update directions for the primal and dual variables are
related by the root-finding update matrix. This is not the case in v1.

• v1 and v2 lead to different (nonequivalent) updates.

• One iteration of v1 is equivalent to an inner iteration in the barrier method.

• In v2, the dual iterates are not necessarily feasible for the original dual problem, while v1 is always
feasible.

• In practice, v2 is often more efficient than v1, as they can exhibit better-than-linear convergence.

17.3 Primal-dual interior-point method

17.3.1 Surrogate duality gap

In v2, we see that update directions for the primal and dual variables are inexorably linked together and
the dual iterates are not necessarily feasible for the original dual problem. To check the optimality of our
solution, we need to construct a surrogate duality gap:

η = −h(x)Tu = −
m∑
i=1

uihi(x).

Remarks:

1. According to the “complementary slackness” condition in the perturbed KKT conditions, we have that
η = −h(x)Tu = −

∑m
i=1 uihi(x) = m

t . Hence, t = m
η .

2. If we have feasible points, i.e. rprim = 0 and rdual = 0, then the duality gap is just −
∑m
i=1 uihi(x).

3. Barrier method doesn’t have this problem: since we set ui = 1
t·hi(x)

, i = 1, ...,m, ui is dual feasible and

the duality gap will be g(u∗(t), v∗(t))− f(x∗(t)) = −mt as shown in the last lecture.
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17.3.2 Primal-dual interior-point method

• Start with strictly feasible primal point x(0), i.e. hi(x
(0)) < 0, i = 1, ...,m, and u(0) > 0, v(0).

• Define the surrogate duality gap η(0) = −h(x(0))Tu(0). Fix η > 1.

• For k = 1, 2, 3, ....

– Define t = µm
η(k−1)

– Compute primal-dual update direction ∆y = (∆x,∆u,∆v)

– Use backtracking to determine step size s

– Update y(k) = y(k−1) + s ·∆y [Newton Update]

– Compute η(k) = −h(x(k))Tu(k)

– Stop if η(k) ≤ ε and ||rprim||22 + ||rdual||22 ≤ ε [Stopping Criterion: surrogate duality gap is small
and primal dual residuals are small (an approximation to feasibility).]

17.3.3 Backtracking line search

How do we set the parameter s to ensure that after each update (x+ = x+s∆x, u+ = u+s∆u, v+ = v+s∆v),
hi(x) < 0 and ui > 0, i = 1, ...,m? We use multi-stage backtracking line search:

• Start with largest step size smax ≤ 1 that ensures u+ s∆u > 0: smax = min{1,min{−ui/∆ui : ∆ui <
0}} [Maintaining ui > 0].

• Then, with parameters α, β ∈ (0, 1), we set s = .99smax and update:

– s = βs, until hi(x
+) < 0, i = 1, ...,m [Maintaining hi(x) < 0.]

– s = βs, until ||r(x+, u+, v+)||2 ≤ (1− αs)||r(x, u, v)||2 [Reducing ||r(x, u, v)||2.]

17.3.4 Example: Standard LP

Next, we recall the standard form of linear program

min
x

cTx

subject to Ax = b

x ≥ 0

for c ∈n, A ∈m×n, b ∈m. The dual of this linear program is

max
u,v

bT v

subject to AT v + u = c

u ≥ 0.

The KKT conditions are

ATv + u = c stationarity

xiui = 0, i = 1, . . . , n complementary slackness

Ax = b primal feasibility

x, u ≥ 0 primal and dual feasibility
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Points x∗ and (u∗, v∗) are optimal solutions for the primal and the dual problem respectively if and only if
they solve the KKT conditions above. The interior point method modifies the second condition whereas, the
simplex method modifies the fourth condition.

Hence, for the interior piint metnod the KKT conditions are

AT v + u = c stationarity

xiui = 1/t, i = 1, . . . , n complementary slackness

Ax = b primal feasibility

x, u ≥ 0 primal and dual feasibility

Barrier method after eliminating u gives, says

0 = rbr(x, v)

=

[
AT v + diag(x)−1 · 1/t− c

Ax− b

]
Then set

0 = rbr(y + ∆y)

or, 0 = rbr(y) +Drbr(y)∆y

Then solve [
−diag(x)−2/t AT

A 0

] [
∆x
∆v

]
= −rbr(x, v)

take step y+ = y + s∆y with line search s > 0

This is repeated until convergence. Then the updated t is µt.

The primal-dual method says

0 = rpd(x, u, v)

=

 AT v + u− c
diag(x)u− 1/t

Ax− b


Then set

0 = rpd(y + ∆y)

or, 0 = rpd(y) +Drpd(y)∆y

Then solve 0 I AT

diag(u) diag(x) 0
A 0 0

∆x
∆u
∆v

 = −rpd(x, u, v)

take step y+ = y + s∆y with line search s > 0

Unlike Barrier method this step is performed only once. The updated t is µt.
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17.3.5 Example: barrier versus primal-dual

To compare the performance we look at an example from the book Convex Optimization by S. Boyd and L.
Vandenberghe. The problem is

min
x

cTx

subject to Ax = 0, x � 0

A ∈100×50. The the problem is primal and dual feasible and the optimal value is p∗ = 1. Thus there are 50
variables and 100 equality constraints. The elements of A are i.i.d standard normal. The initial point x(0)

has elements which are i.i.d U [0, 1] to ensure that x(0) is primal feasible. The cost vector c is constructed
by first constructing z ∈m from standard normal and s ∈n from U [0, 1] and then setting c = AT z + s. This
guarantees dual feasibility. The backtracking parameters used are α = 0.01, β = 0.5. The initial value is t
is t(0) = 1. The plot for µ = 2, 50 & 150 is shown in Figure 17.3.5 (11.4 from the book). The barrier method
with standard LP was repeated by growing n and maintaining n = 2m. The convergence is roughly linear
for all values of µ.

Next the primal dual interior point method is applied with µ = 10 and = 0.01, β = 0.5. The surrogate
gap η̂(x, λ) = −f(x)Tλ (λ is a dual variable) and the norm of the primal dual residuals (rfeas = (‖rpri‖22 +
‖rdual‖22)1/2) are plot against the iteration number in Figure 17.3.5 (11.21 from the book). The convergence
is faster compared to the barrier method.

The number of iterations against the number of variables in Figure 17.3.5 (11.8 & 11.23 from the book) for
the barrier method with µ = 100 as well as the primal-dual method with µ = 10. The primal-dual method
requires only slightly more iterations than the Barrier method however it gives better accuracy.
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